Recurrence formulas for Chebyshev polynomials orthonormal on uniform grid
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 86-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider recurrence relations for the classical Chebyshev polynomials $\left\{ \tau_n^{\alpha, \beta}(x, N) \right\}_{n=0}^{N-1}$, forming a finite orthonormal system on a uniform grid $\Omega_N = \left\{ 0, 1, \ldots, N-1\right\}$ with weight $\mu_N^{\alpha,\beta}(x) = c \, \frac{\Gamma(x+\beta+1)\Gamma(N-x+\alpha)}{ \Gamma(x+1)\Gamma(N-x)}$, where $c = \frac{\Gamma(N)2^{\alpha+\beta+1}}{\Gamma(N+\alpha+\beta+1)}$, $\alpha,\beta>-1$. Special attention is paid to the most commonly used cases: $\alpha=\beta$; $\alpha=\beta=0$; $\alpha=\beta=\pm 1/2$ and several others. In the proof of recurrence formulas we substantially use the well-known properties of the considered Chebyshev polynomials such as the orthogonality property, difference properties and the connection with the generalized hypergeometric function.
Keywords: Chebychev polynomials; recurrence formulas; polynomials orthogonal on grids; uniform grid; function approximation.
@article{DEMR_2017_7_a9,
     author = {M. S. Sultanakhmedov},
     title = {Recurrence formulas for {Chebyshev} polynomials orthonormal on uniform grid},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {86--93},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a9/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - Recurrence formulas for Chebyshev polynomials orthonormal on uniform grid
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 86
EP  - 93
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a9/
LA  - ru
ID  - DEMR_2017_7_a9
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T Recurrence formulas for Chebyshev polynomials orthonormal on uniform grid
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 86-93
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a9/
%G ru
%F DEMR_2017_7_a9
M. S. Sultanakhmedov. Recurrence formulas for Chebyshev polynomials orthonormal on uniform grid. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 86-93. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a9/

[1] Chebyshev P.L., “O nepreryvnykh drobyakh (1855)”, Polnoe sobranie sochinenii, v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR

[2] Chebyshev P.L., “Ob odnom novom ryade”, Polnoe sobranie sochinenii, v. 2, Izd. AN SSSR, M., 1947 | MR

[3] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshikh kvadratov (1859)”, Polnoe sobranie sochinenii, v. 2, Izd. AN SSSR, M., 1947 | MR

[4] Nikiforov A.F., Suslov S.K., Uvarov V.B., “Klassicheskie ortogonalnye polinomy diskretnoi peremennoi i predstavleniya trekhmernoi gruppy vraschenii”, Funkts. analiz i ego pril., 1985, no. 3, 22–35 | MR | Zbl

[5] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh. Teoriya i prilozheniya, DGPU, Makhachkala, 1997, 252 pp.

[6] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam. Teoriya i prilozheniya, Dagestan. nauch. tsentr RAN, Makhachkala, 2004, 276 pp.

[7] Sharapudinov I.I., “Smeshannye ryady po klassicheskim ortogonalnym polinomam”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2015, no. 3, Spetsialnyi vypusk, 1–254