Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions ${\psi}_{1,n}(x, N)$ ($n=0,1,\ldots,$ $N$), orthonormal in Sobolev sense and generated by a given orthonormal on finite grid $\Omega_N=\left\{ 0,1,\ldots,N-1 \right\}$ system of functions ${\psi}_{n}(x,N)$ $( n=0,1,\ldots,N-1)$. These new functions are orthonormal with respect to the inner product of the following type: $\langle f,g\rangle = f(0)g(0)+ \sum_{j=0}^{N-1}\Delta f(j)\Delta g(j)\rho(j)$. It is shown that the finite Fourier series by the functions ${\psi}_{1,n}(x)$ and their partial sums are convenient and a very effective tool for the approximate solution of the Cauchy problem for nonlinear difference equations.
Keywords: Sobolev orthogonal functions; functions orthogonal on the finite grid; finite grid; uniform grid; approximation of discrete functions; mixed series by the functions orthogonal on a uniform grid; iterative process for the approximate solution of difference equations.
@article{DEMR_2017_7_a8,
     author = {M. S. Sultanakhmedov},
     title = {Cauchy problem for the difference equation and {Sobolev} orthogonal functions on the finite grid, generated by discrete orthogonal functions},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 77
EP  - 85
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/
LA  - en
ID  - DEMR_2017_7_a8
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 77-85
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/
%G en
%F DEMR_2017_7_a8
M. S. Sultanakhmedov. Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 77-85. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/

[1] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[2] Marcellan F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[3] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[4] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl

[5] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl

[6] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 2014, 40 pp., arXiv: 6249v1 [math.CA] | MR

[7] Sharapudinov I.I., “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Math. Notes, 67:3 (2000), 389–397 | DOI | MR | Zbl

[8] Sharapudinov I.I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sbornik: Mathematics, 194:3 (2003), 423–456 | DOI | MR | Zbl

[9] Sharapudinov I.I., Smeshannie ryadi po ortogonalnim poliminam, Izdatelstvo Dagestanskogo nauchnogo centra, Makhachakala, 2004, 176 pp. (in Russian)

[10] Sharapudinov I.I., “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3 (2005), 403–423 | DOI | MR | Zbl

[11] Sharapudinov I.I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sbornik: Mathematics, 197:3 (2006), 433–452 | DOI | MR | Zbl

[12] Sharapudinov I.I., Sharapudinov T.I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | MR | Zbl

[13] Sharapudinov I.I., Sharapudinov T.I., “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh”, Russian Mathematics, 61:8 (2017), 59–70 | MR

[14] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineynih sistem ODU posredstvom ryadov Furye po funkciyam, ortogonal'nym po Sobolevu”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 66–76 | DOI

[15] Sharapudinov I.I., Magomedov S.R., “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 1–15 | DOI | MR

[16] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Difference equations and Sobolev orthogonal polynomials, generated by Meixner polynomials”, Vladikavkaz Mathematical Journal, 19:2 (2017), 58–72 | MR

[17] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 29–39 | DOI