Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 77-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions ${\psi}_{1,n}(x, N)$ ($n=0,1,\ldots,$ $N$), orthonormal in Sobolev sense and generated by a given orthonormal on finite grid $\Omega_N=\left\{ 0,1,\ldots,N-1 \right\}$ system of functions ${\psi}_{n}(x,N)$ $( n=0,1,\ldots,N-1)$. These new functions are orthonormal with respect to the inner product of the following type: $\langle f,g\rangle = f(0)g(0)+ \sum_{j=0}^{N-1}\Delta f(j)\Delta g(j)\rho(j)$. It is shown that the finite Fourier series by the functions ${\psi}_{1,n}(x)$ and their partial sums are convenient and a very effective tool for the approximate solution of the Cauchy problem for nonlinear difference equations.
Keywords: Sobolev orthogonal functions; functions orthogonal on the finite grid; finite grid; uniform grid; approximation of discrete functions; mixed series by the functions orthogonal on a uniform grid; iterative process for the approximate solution of difference equations.
@article{DEMR_2017_7_a8,
     author = {M. S. Sultanakhmedov},
     title = {Cauchy problem for the difference equation and {Sobolev} orthogonal functions on the finite grid, generated by discrete orthogonal functions},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 77
EP  - 85
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/
LA  - en
ID  - DEMR_2017_7_a8
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 77-85
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/
%G en
%F DEMR_2017_7_a8
M. S. Sultanakhmedov. Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 77-85. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a8/