Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the study of approximation properties of partial sums of the Fourier series in the modified Meixner polynomials $M_{n,N}^\alpha(x)=M_n^\alpha(Nx)$ $(n=0, 1, \dots)$ which for $\alpha>-1$ constitute an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$, where $\delta=\frac{1}{N}$, $N>0$ with weight $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$. The main attention is paid to obtaining an upper estimate for the Lebesgue function of these partial sums.
Keywords: Meixner polynomials, Fourier series, Lebesgue function.
@article{DEMR_2017_7_a6,
     author = {R. M. Gadzhimirzaev},
     title = {Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by {Fourier-Meixner} sums},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {61--65},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 61
EP  - 65
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/
LA  - ru
ID  - DEMR_2017_7_a6
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 61-65
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/
%G ru
%F DEMR_2017_7_a6
R. M. Gadzhimirzaev. Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 61-65. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/

[1] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997

[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii., v. 2, Nauka, M., 1974

[3] Nikiforov A.F., Suslov S.K., Uvarov V.B., Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, Nauka, M., 1985 | MR

[4] Sharapudinov I.I., “Ob asimptotike i vesovykh otsenkakh polinomov Meiksnera, ortogonalnykh na setke $\{0,\delta, 2\delta, \ldots\}$”, Matem. zametki, 62:4 (1997) | DOI | MR | Zbl