Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
Daghestan Electronic Mathematical Reports, no. 7 (2017), pp. 61-65
Cet article a éte moissonné depuis la source Math-Net.Ru
The present paper is devoted to the study of approximation properties of partial sums of the Fourier series in the modified Meixner polynomials $M_{n,N}^\alpha(x)=M_n^\alpha(Nx)$ $(n=0, 1, \dots)$ which for $\alpha>-1$ constitute an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$, where $\delta=\frac{1}{N}$, $N>0$ with weight $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$. The main attention is paid to obtaining an upper estimate for the Lebesgue function of these partial sums.
Keywords:
Meixner polynomials, Fourier series
Mots-clés : Lebesgue function.
Mots-clés : Lebesgue function.
@article{DEMR_2017_7_a6,
author = {R. M. Gadzhimirzaev},
title = {Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by {Fourier-Meixner} sums},
journal = {Daghestan Electronic Mathematical Reports},
pages = {61--65},
year = {2017},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/}
}
TY - JOUR
AU - R. M. Gadzhimirzaev
TI - Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
JO - Daghestan Electronic Mathematical Reports
PY - 2017
SP - 61
EP - 65
IS - 7
UR - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/
LA - ru
ID - DEMR_2017_7_a6
ER -
R. M. Gadzhimirzaev. Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums. Daghestan Electronic Mathematical Reports, no. 7 (2017), pp. 61-65. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a6/
[1] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii., v. 2, Nauka, M., 1974
[3] Nikiforov A.F., Suslov S.K., Uvarov V.B., Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, Nauka, M., 1985 | MR
[4] Sharapudinov I.I., “Ob asimptotike i vesovykh otsenkakh polinomov Meiksnera, ortogonalnykh na setke $\{0,\delta, 2\delta, \ldots\}$”, Matem. zametki, 62:4 (1997) | DOI | MR | Zbl