Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 47-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact order-of-magnitude estimates of convergence rate of sine and cosine series with coefficients $1/k^q$, $q>1$, are obtained. In case when $0 \le q \le 1$ growth rate exact order-of-magnitude estimates of partial sums of sine and cosine series are proven.
Keywords: sine series, cosine series, lower estimate, convergence rate, growth rate.
@article{DEMR_2017_7_a4,
     author = {M. G. Magomed-Kasumov},
     title = {Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {47--51},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 47
EP  - 51
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/
LA  - ru
ID  - DEMR_2017_7_a4
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 47-51
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/
%G ru
%F DEMR_2017_7_a4
M. G. Magomed-Kasumov. Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 47-51. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/

[1] Magomed-Kasumov M.G., “Approksimativnye svoistva srednikh Valle Pussena dlya kusochno gladkikh funktsii”, Matematicheskie zametki, 100 (2016), 229–247 | DOI | MR | Zbl

[2] Bari N.K., Trigonometricheskie ryady, GIFML, M., 1961, 936 pp. | MR