Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 47-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact order-of-magnitude estimates of convergence rate of sine and cosine series with coefficients $1/k^q$, $q>1$, are obtained. In case when $0 \le q \le 1$ growth rate exact order-of-magnitude estimates of partial sums of sine and cosine series are proven.
Keywords:
sine series, cosine series, lower estimate, convergence rate, growth rate.
@article{DEMR_2017_7_a4,
author = {M. G. Magomed-Kasumov},
title = {Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients},
journal = {Daghestan Electronic Mathematical Reports},
pages = {47--51},
publisher = {mathdoc},
volume = {7},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/}
}
M. G. Magomed-Kasumov. Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 47-51. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a4/