Mots-clés : interpolation splines
@article{DEMR_2017_7_a1,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Splines for three-point rational interpolants with autonomous poles},
journal = {Daghestan Electronic Mathematical Reports},
pages = {16--28},
year = {2017},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a1/}
}
A.-R. K. Ramazanov; V. G. Magomedova. Splines for three-point rational interpolants with autonomous poles. Daghestan Electronic Mathematical Reports, no. 7 (2017), pp. 16-28. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a1/
[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972
[2] Stechkin S.B., Subbotin Yu.N., Dobavleniya k knige Dzh. Alberg, E. Nilson, Dzh. Uolsh. Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR
[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[4] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[5] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo LGU, L., 1986
[6] Zavyalov Yu.S., Kvasov B.I.,Miroshnichenko V.L., Metody splain–funktsii, Nauka, M., 1980 | MR
[7] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matem., 3:4 (1997), 1043–1058 | MR | Zbl
[8] Nord S., “Approximation properties of the spline fit”, BIT., 7 (1967), 132–144 | DOI | MR | Zbl
[9] Privalov Al.A., “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Matem. zametki, 25:5 (1979), 681–700 | MR | Zbl
[10] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestanskie Elektronnye Matematicheskie Izvestiya., 2015, no. 4, 22–31 | MR
[11] Ramazanov A.-R.K., Magomedova V.G., “Splainy po chetyrekhtochechnym ratsionalnym interpolyantam”, Tr. In-ta matematiki i mekhaniki UrO RAN., 22:4 (2016), 233–246 | MR