Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net
Daghestan Electronic Mathematical Reports, Tome 5 (2016), pp. 56-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the problem of constructing polynomials, orthogonal in Sobolev sence on the finite uniform net and associated with classical Chebyshev polynomials of discrete variable. We have found an explicit expression of these polynomials by classical Chebyshev polynomials. Also we have obtained an expansion of new polynomials by generalized powers of Newton type. We obtain expressions for the deviation of a discrete function and its finite differences from respectively partial sums of its Fourier series on the new system of polynomials and their finite differences.
Keywords: Polynomials orthogonal in Sobolev sence, Chebyshev polynomials orthogonal on the grid, approximation of discrete functions, mixed series of Chebyshev polynomials orthogonal on a uniform grid.
@article{DEMR_2016_5_a5,
     author = {I. I. Sharapudinov and T. I. Sharapudinov},
     title = {Polynomials, orthogonal on {Sobolev,} derived by the {Chebyshev} polynomials, orthogonal on the uniform net},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {56--75},
     publisher = {mathdoc},
     volume = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - T. I. Sharapudinov
TI  - Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 56
EP  - 75
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/
LA  - en
ID  - DEMR_2016_5_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A T. I. Sharapudinov
%T Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 56-75
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/
%G en
%F DEMR_2016_5_a5
I. I. Sharapudinov; T. I. Sharapudinov. Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net. Daghestan Electronic Mathematical Reports, Tome 5 (2016), pp. 56-75. http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/

[1] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, Journal of Approximation Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[2] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48:1–2 (1993), 113–131 | DOI | MR | Zbl

[3] Meijer H.G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, Journal of Approximation Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[4] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl

[5] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[6] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308-352 | DOI | MR | Zbl

[7] Sharapudinov I.I., “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Mathematical notes, 67:3 (2000), 389–397 | DOI | MR | Zbl

[8] Sharapudinov I.I., “Approximation of functions of variable smoothness by Fourier-Legendre sums”, Sbornik: Mathematics, 191:5 (2000), 191-759 | DOI | MR | Zbl

[9] Sharapudinov I.I., “Approximation properties of the operators ${\cal Y}_{n+2r}(f)$ and of their discrete analogs”, Mathematical notes, 72:5 (2002), 705–732 | DOI | MR | Zbl

[10] Sharapudinov I.I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sbornik: Mathematics, 194:3 (2003), 194–223 | DOI | MR

[11] Sharapudinov I.I., “Mixed series by classical orthogonal polynomials”, Daghestan Electronic Mathematical Reports, 2015, no. 3, 1–254 (in Russian)

[12] Sharapudinov I.I., “Mixed series on Chebyshev polynomials, orthogonal on the uniform net”, Mathematical notes, 78:3 (2005), 403–423 | DOI | MR | Zbl

[13] Sharapudinov I.I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^{r}$”, Sbornik: Mathematics, 197:3 (2006), 433–452 | DOI | MR | Zbl

[14] Sharapudinov T.I., “Approximation properties of mixed series on Chebyshev polynomials, orthogonal on the uniform net”, Herald of Daghestan Scientific Center, 2007, no. 29, 12–23

[15] Sharapudinov I.I., “Approximation properties of the Vallee-Poussin means of partial sums of a mixed series of Legendre polynomials”, Matematical notes, 84:3 (2008), 417–434 | DOI | MR | Zbl

[16] Sharapudinov I.I., Muratova G.N., “Some Properties of $r$-fold Integrated Series on Fourier – Haar System”, Izv. Sarat. Un-ta Nov. Ser., Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[17] Sharapudinov I.I., Sharapudinov T.I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Matematical notes, 88:1 (2010), 112–139 | DOI | MR | Zbl

[18] Sharapudinov I.I., “Sistemy funktsiy, ortogonalnih po Sobolevu, porozhdennie ortogonalnimi funktsiyami”, Sovremennye problemy teorii funktsiy i ih prilozheniya, Materialy 18-y mezhdunarodnoy Saratovskoy zimney shkoly (January 27 – February 3, 2016), 329–332

[19] Chebyshev P.L., “O nepreryvnyh drobyah. (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR

[20] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 236–238 | MR

[21] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshih kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 314–334 | MR

[22] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 357–374 | MR

[23] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyashih (1875)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR

[24] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnie metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, Moskva, 1986, 440 pp. (in Russian)

[25] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000, 165 pp. | MR | Zbl

[26] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996, 299 pp.

[27] Sharapudinov I.I., “Asymptotic properties and weighted estimates for Chebyshev – Hahn orthogonal polynomials”, Mathematics of the USSR-Sbornik, 72:2 (1992), 387–401 (in Russian) | DOI | MR | Zbl

[28] Sharapudinov I.I., “Ob asimptotike mnogochkenov Chebysheva, ortogonalnyh na konechnoy sisteme tochek”, Vestnik MGU. Seriya 1, 1992, no. 1, 29–35 (in Russian) | MR

[29] Sharapudinov I.I., Mnogoshleny, ortogonalnye na diskretnyh setkah, Izdatelstvo Dag. Gos. Ped. Un-ta, Makhachkala, 1997, 234 pp. (in Russian)

[30] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennyh differentsialnyh uravneniy s ispolzovaniem smeshannyh ryadov po sisteme Haara”, Sovremennye problemy teorii funktsiy i ih prilozheniya, Materialy 18-y mezhdunarodnoy Saratovskoy zimney shkoly (January 27 – February 3, 2016), 176–178 (in Russian)