Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2016_5_a5, author = {I. I. Sharapudinov and T. I. Sharapudinov}, title = {Polynomials, orthogonal on {Sobolev,} derived by the {Chebyshev} polynomials, orthogonal on the uniform net}, journal = {Daghestan Electronic Mathematical Reports}, pages = {56--75}, publisher = {mathdoc}, volume = {5}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/} }
TY - JOUR AU - I. I. Sharapudinov AU - T. I. Sharapudinov TI - Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net JO - Daghestan Electronic Mathematical Reports PY - 2016 SP - 56 EP - 75 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/ LA - en ID - DEMR_2016_5_a5 ER -
%0 Journal Article %A I. I. Sharapudinov %A T. I. Sharapudinov %T Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net %J Daghestan Electronic Mathematical Reports %D 2016 %P 56-75 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/ %G en %F DEMR_2016_5_a5
I. I. Sharapudinov; T. I. Sharapudinov. Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net. Daghestan Electronic Mathematical Reports, Tome 5 (2016), pp. 56-75. http://geodesic.mathdoc.fr/item/DEMR_2016_5_a5/
[1] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, Journal of Approximation Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl
[2] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48:1–2 (1993), 113–131 | DOI | MR | Zbl
[3] Meijer H.G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, Journal of Approximation Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl
[4] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl
[5] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl
[6] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308-352 | DOI | MR | Zbl
[7] Sharapudinov I.I., “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Mathematical notes, 67:3 (2000), 389–397 | DOI | MR | Zbl
[8] Sharapudinov I.I., “Approximation of functions of variable smoothness by Fourier-Legendre sums”, Sbornik: Mathematics, 191:5 (2000), 191-759 | DOI | MR | Zbl
[9] Sharapudinov I.I., “Approximation properties of the operators ${\cal Y}_{n+2r}(f)$ and of their discrete analogs”, Mathematical notes, 72:5 (2002), 705–732 | DOI | MR | Zbl
[10] Sharapudinov I.I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sbornik: Mathematics, 194:3 (2003), 194–223 | DOI | MR
[11] Sharapudinov I.I., “Mixed series by classical orthogonal polynomials”, Daghestan Electronic Mathematical Reports, 2015, no. 3, 1–254 (in Russian)
[12] Sharapudinov I.I., “Mixed series on Chebyshev polynomials, orthogonal on the uniform net”, Mathematical notes, 78:3 (2005), 403–423 | DOI | MR | Zbl
[13] Sharapudinov I.I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^{r}$”, Sbornik: Mathematics, 197:3 (2006), 433–452 | DOI | MR | Zbl
[14] Sharapudinov T.I., “Approximation properties of mixed series on Chebyshev polynomials, orthogonal on the uniform net”, Herald of Daghestan Scientific Center, 2007, no. 29, 12–23
[15] Sharapudinov I.I., “Approximation properties of the Vallee-Poussin means of partial sums of a mixed series of Legendre polynomials”, Matematical notes, 84:3 (2008), 417–434 | DOI | MR | Zbl
[16] Sharapudinov I.I., Muratova G.N., “Some Properties of $r$-fold Integrated Series on Fourier – Haar System”, Izv. Sarat. Un-ta Nov. Ser., Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
[17] Sharapudinov I.I., Sharapudinov T.I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Matematical notes, 88:1 (2010), 112–139 | DOI | MR | Zbl
[18] Sharapudinov I.I., “Sistemy funktsiy, ortogonalnih po Sobolevu, porozhdennie ortogonalnimi funktsiyami”, Sovremennye problemy teorii funktsiy i ih prilozheniya, Materialy 18-y mezhdunarodnoy Saratovskoy zimney shkoly (January 27 – February 3, 2016), 329–332
[19] Chebyshev P.L., “O nepreryvnyh drobyah. (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR
[20] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 236–238 | MR
[21] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshih kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 314–334 | MR
[22] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 357–374 | MR
[23] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyashih (1875)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR
[24] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnie metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, Moskva, 1986, 440 pp. (in Russian)
[25] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000, 165 pp. | MR | Zbl
[26] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996, 299 pp.
[27] Sharapudinov I.I., “Asymptotic properties and weighted estimates for Chebyshev – Hahn orthogonal polynomials”, Mathematics of the USSR-Sbornik, 72:2 (1992), 387–401 (in Russian) | DOI | MR | Zbl
[28] Sharapudinov I.I., “Ob asimptotike mnogochkenov Chebysheva, ortogonalnyh na konechnoy sisteme tochek”, Vestnik MGU. Seriya 1, 1992, no. 1, 29–35 (in Russian) | MR
[29] Sharapudinov I.I., Mnogoshleny, ortogonalnye na diskretnyh setkah, Izdatelstvo Dag. Gos. Ped. Un-ta, Makhachkala, 1997, 234 pp. (in Russian)
[30] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennyh differentsialnyh uravneniy s ispolzovaniem smeshannyh ryadov po sisteme Haara”, Sovremennye problemy teorii funktsiy i ih prilozheniya, Materialy 18-y mezhdunarodnoy Saratovskoy zimney shkoly (January 27 – February 3, 2016), 176–178 (in Russian)