@article{DEMR_2016_5_a1,
author = {G. G. Akniev},
title = {Approximation properties of {Fourier} sums for $2\pi$-periodic piecewise linear continuous functions},
journal = {Daghestan Electronic Mathematical Reports},
pages = {13--19},
year = {2016},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DEMR_2016_5_a1/}
}
G. G. Akniev. Approximation properties of Fourier sums for $2\pi$-periodic piecewise linear continuous functions. Daghestan Electronic Mathematical Reports, no. 5 (2016), pp. 13-19. http://geodesic.mathdoc.fr/item/DEMR_2016_5_a1/
[1] Walsh J.L., Ahlberg J.H., Nilson E.N., The Theory of Splines and Their Applications, Mathematics in Science and Engineering, 38, Academic Press, 1967, 283 pp. | MR
[2] Miroshnichenko V.L., Zav'yalov U.S., Kvasov B.I., Metody splain-funktsiy, Nauka, Moscow, 1980, 352 pp. (in Russian) | MR
[3] Subbotin U.N., Stechkin S.B., Splainy v vichislitel'noy matematike, Nauka, Moscow, 1976, 248 pp. (in Russian) | MR
[4] Sharapudinov I.I., “Approximation properties of Fejer- and de la Vallee-Poussin-type means for partial sums of a special series in the system $ \{\sin x\sin kx\}_{k=1}^\infty$”, Sbornik: Mathematics, 206:4 (2015), 131–148 | DOI | MR | Zbl
[5] Zygmund A., Trigonometric Series, v. 1, Cambridge University Press, 2002, 747 pp. | MR | Zbl
[6] Magomed-Kasumov M.G., “Approximation properties of classic Vallee Poussin means for piecewise smooth functions”, Herald of Daghestan Scientific Center, 54 (2014), 5–12 (in Russian)
[7] Magomed-Kasumov M.G., “Approximation Properties of de la Vallee-Poussin Means for Piecewise Smooth Functions”, Mathematical notes, 100:2 (2016), 229–247 | DOI | MR | Zbl
[8] Bari N.K., Trigonometricheskiye ryady, FIZMATLIT, Moscow, 1961, 936 pp. (in Russian) | MR
[9] Fihtengolts G.M., Kurs differentsial'nogo i integralnogo ischisleniya, v. 3, FIZMATLIT, Moscow, 2001, 728 pp. (in Russian)