Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2015_4_a4, author = {I. I. Sharapudinov and T. I. Sharapudinov}, title = {On the simultaneous approximation of functions and their derivatives by {Chebyshev} polynomials orthogonal on uniform grid}, journal = {Daghestan Electronic Mathematical Reports}, pages = {74--117}, publisher = {mathdoc}, volume = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a4/} }
TY - JOUR AU - I. I. Sharapudinov AU - T. I. Sharapudinov TI - On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid JO - Daghestan Electronic Mathematical Reports PY - 2015 SP - 74 EP - 117 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a4/ LA - ru ID - DEMR_2015_4_a4 ER -
%0 Journal Article %A I. I. Sharapudinov %A T. I. Sharapudinov %T On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid %J Daghestan Electronic Mathematical Reports %D 2015 %P 74-117 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a4/ %G ru %F DEMR_2015_4_a4
I. I. Sharapudinov; T. I. Sharapudinov. On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 74-117. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a4/
[1] Telyakovskii S.A., “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matematicheskii sbornik, 70:2 (1966), 252–265
[2] Gopengauz I.Z., “K teoreme A.F.Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matematicheskie zametki, 1:2 (1967), 163–172 | MR | Zbl
[3] Malozemov V.N., Sovmestnoe priblizhenie funktsii i ee proizvodnykh, Izd-vo LGU, L., 1973 | MR
[4] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii, Nauka, M., 1977 | MR
[5] Telyakovskii S.A., “Otsenka odnovremennogo priblizheniya funktsii i ikh proizvodnykh summami Fure”, Matematicheskie zametki, 90:3 (2011), 478–480 | DOI | MR | Zbl
[6] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov: prognoz i upravlenie, v. 1, 2, Mir, M., 1974 | MR
[7] Deich A.M., Metody identifikatsii dinamicheskikh ob'ektov, Energiya, M., 1979
[8] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986 | MR
[9] Demidovich B.P., Maron I.A., Osnovy vychislitelnoi matematiki, Nauka, Moskva, 1966 | MR
[10] Stechkin C.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, Moskva, 1976 | MR
[11] Vitushkin A.G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatlit, Moskva, 1959 | MR
[12] Chebyshev P.L., “O nepreryvnykh drobyakh (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, Moskva, 1947, 103–126
[13] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, Moskva, 1947, 236–238 | MR
[14] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshikh kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, Moskva, 1947, 314–334 | MR
[15] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, Moskva, 1947, 357–374 | MR
[16] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch. Moskva, v. 2, Izd. AN SSSR, 1947, 66–87 | MR
[17] Sharapudinov I.I., “O skhodimosti metoda naimenshikh kvadratov”, Matematicheskie zametki, 53:3 (1993), 131–143 | MR | Zbl
[18] Trefethen L.N., Spectral methods in Matlab, SIAM, Fhiladelphia, 2000 | MR | Zbl
[19] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996
[20] Arushanyan O.B., Volchenskova N.I., Zaletkin S.F., “O vychislenii koeffitsientov ryadov Chebysheva dlya reshenii obyknovennykh differentsialnykh uravnenii”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 273–283 | MR | Zbl
[21] Saeed Radhoush, Mahmoud Samavat, Mohammad Ali Vali, “Optimal control of linear time-varying systems using the Chebyshev wavelets (a comparative approach)”, Systems Science and Control Engineering: An Open Access Journal, 2 (2014), 691–698 | DOI
[22] Sharapudinov I.I., “Asimptoticheskie svoistva i vesovye otsenki mnogochlenov Chebysheva–Khana algebraicheskimi mnogochlenami”, Matematicheskii sbornik, 183:3 (1991), 408–420
[23] Sharapudinov I.I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestnik MGU. Seriya 1, 1 (1992), 29–35 | MR
[24] Sharapudinov I.I., Mnogochleny, ortogonalnye na diskretnykh setkakh, Izdatelstvo Dag. gos. ped. un-ta, Makhachkala, 1997
[25] Sharapudinov I.I., “Priblizhenie diskretnykh funktsii i mnogochleny Chebysheva, ortogonalnye na ravnomernoi setke”, Matematicheskie zametki, 67:3 (2000), 460–470 | DOI | MR | Zbl
[26] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matematicheskie zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl
[27] Sharapudinov I.I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matematicheskie zametki, 78:3 (2005), 442–465 | DOI | MR | Zbl
[28] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl
[29] Sharapudinov T.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 29 (2007), 12–23