Splines on rational interpolants
Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 21-30

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function continuous on a given interval (or periodic) we construct $n$-point ($n=2,3,4$) rational interpolants and rational splines by means of of these interpolants. The sequences of the splines by the n-point interpolants for $n = 2$ and $n=3$ converges uniformly on the entire interval to the function itself for any sequence of grids with a diameter tending to zero. For $n= 3$ this property of unconditional convergence is also transmitted to the first derivatives, and for $n = 4$ – to the first and second derivatives. We also give estimates of the convergence rate.
Keywords: splines, interpolation rational splines, unconditional convergence.
@article{DEMR_2015_4_a2,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Splines on rational interpolants},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Splines on rational interpolants
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 21
EP  - 30
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/
LA  - ru
ID  - DEMR_2015_4_a2
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Splines on rational interpolants
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 21-30
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/
%G ru
%F DEMR_2015_4_a2
A.-R. K. Ramazanov; V. G. Magomedova. Splines on rational interpolants. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 21-30. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/