Splines on rational interpolants
Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function continuous on a given interval (or periodic) we construct $n$-point ($n=2,3,4$) rational interpolants and rational splines by means of of these interpolants. The sequences of the splines by the n-point interpolants for $n = 2$ and $n=3$ converges uniformly on the entire interval to the function itself for any sequence of grids with a diameter tending to zero. For $n= 3$ this property of unconditional convergence is also transmitted to the first derivatives, and for $n = 4$ – to the first and second derivatives. We also give estimates of the convergence rate.
Keywords: splines, interpolation rational splines, unconditional convergence.
@article{DEMR_2015_4_a2,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Splines on rational interpolants},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Splines on rational interpolants
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 21
EP  - 30
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/
LA  - ru
ID  - DEMR_2015_4_a2
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Splines on rational interpolants
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 21-30
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/
%G ru
%F DEMR_2015_4_a2
A.-R. K. Ramazanov; V. G. Magomedova. Splines on rational interpolants. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 21-30. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a2/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR

[2] Stechkin S.V., Subbotin Yu.N., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR

[3] Stechkin S.V., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR

[4] Korneichuk N.V., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[5] Chernykh N.I., “Priblizhenie splainami s zadannoi plotnostyu raspredeleniya uzlov”, Tr. MIAN SSSR, 138 (1975), 174–197 | Zbl

[6] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo LGU, L., 1986 | MR

[7] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980 | MR

[8] Nord S., “Approximation properties of the spline fit”, BIT, 7 (1967), 132–144 | DOI | MR | Zbl

[9] Privalov Al.A., “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Matem. zametki, 25:5 (1979), 681–700 | MR | Zbl

[10] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | MR | Zbl

[11] Duan Q., Djidjeli K., Price W.G., Twizell E.H., “Weighted rational cubic spline interpolation and its application”, J. of Computational and Applied Mathematics, 117:2 (2000), 121–135 | DOI | MR | Zbl

[12] Oja P., “Rational spline interpolation to monotonic data”, Proceed. of the Estonian Acad. of Sciences. Physics*Mathematics, 48:1 (1999), 22–30 | MR | Zbl

[13] Tian M., Geng H.L., “Error analysis of a rational interpolation spline”, Intern. J. of Mathematical Analysis, 5:25–28, 1287–1294 | MR | Zbl

[14] Hussain M.Z., Sarfraz M., Shaikh T.S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics Journal, 12 (2011), 231–236 | DOI

[15] Edeoa A. Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[16] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matem., 3:4 (1997), 1043–1058 | MR | Zbl