Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind
Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 1-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Chebyshev polynomials $T_n(x)=\cos(n\arccos x) (n=0,1,\ldots)$, for any natural $r$ we build a new system of polynomials $\left\{T_{r,k}(x)\right\}_{k=0}^\infty$, orthonormal with respect to the Sobolev type inner product of the following form $$ ,g>=\sum_{\nu=0}^{r-1}f^{(\nu)}(-1)g^{(\nu)}(-1)+\int_{-1}^{1} f^{(r)}(t)g^{(r)}(t)\kappa(t) dt, $$ where $\kappa(t)=\frac2\pi(1-t^2)^{-\frac12}$. The convergence of the Fourier series by the system $\left\{T_{r,k}(x)\right\}_{k=0}^\infty$ is investigated. We consider the important special cases of systems of this type. For these instances we obtain explicit representations, that can be used in the study of asymptotic properties of functions $T_{r,k}(x)$ when $k\to\infty$ and study of the approximative properties of Fourier sums by the system $\left\{T_{r,k}(x)\right\}_{k = 0}^\infty$.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Chebyshev polynomials of the first kind.
@article{DEMR_2015_4_a0,
     author = {I. I. Sharapudinov and M. G. Magomed-Kasumov and S. R. Magomedov},
     title = {Sobolev orthogonal polynomials, associated with the {Chebyshev} polynomials of the first kind},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - M. G. Magomed-Kasumov
AU  - S. R. Magomedov
TI  - Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 1
EP  - 14
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a0/
LA  - ru
ID  - DEMR_2015_4_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A M. G. Magomed-Kasumov
%A S. R. Magomedov
%T Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 1-14
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a0/
%G ru
%F DEMR_2015_4_a0
I. I. Sharapudinov; M. G. Magomed-Kasumov; S. R. Magomedov. Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 1-14. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a0/

[1] Sharapudinov I.I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure – Lezhandra”, Matematicheskii sbornik, 191:5 (2000), 143–160 | DOI | MR | Zbl

[2] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matematicheskie zametki, 72:5 (2000), 765–795 | DOI | MR

[3] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 276 pp.

[4] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl

[5] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matematicheskie zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl

[6] Sharapudinov I.I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matematicheskii sbornik, 194:3 (2003), 115–148 | DOI | MR | Zbl

[7] Sharapudinov I.I., Sharapudinov T.I., “Smeshannye ryady po polinomam Yakobi i Chebysheva i ikh diskretizatsiya”, Matematicheskie zametki, 88:1 (2010), 116–147 | DOI | MR | Zbl

[8] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[9] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[10] Marcellan F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[11] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[12] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl

[13] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl

[14] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 25 Mar 2014, 40 pp., arXiv: 1403.6249v1 [math.CA] | MR

[15] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962

[16] Gasper G., “Positiviti and special function”, Theory and appl. Spec.Funct., ed. Richard A. Askey, 1975, 375–433 | MR | Zbl

[17] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc.Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl

[18] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, Moskva, 1999 | MR