Mixed series by classical orthogonal polynomials
Daghestan Electronic Mathematical Reports, Tome 3 (2015), pp. 1-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is dedicated to the foundations of the rapidly developing theory of special (mixed) series with the property of sticking of their partial sums by classical polynomials orthogonal either on the intervals or on uniform grids. It is shown that partial sums of special series compare favorably by approximative properties with corresponding partial sums of Fourier series by the same orthogonal polynomials. For example, the partial sums of mixed series can be successfully used to solve the problem of simultaneous approximation of a differentiable function and its multiple derivatives, while the partial sums of the Fourier series by orthogonal polynomials are not suitable for this task.
Keywords: Fourier series; orthogonal polynomials; special series; mixed series; approximative properties; approximation of functions and their derivatives.
@article{DEMR_2015_3_a0,
     author = {I. I. Sharapudinov},
     title = {Mixed series by classical orthogonal polynomials},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--254},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_3_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Mixed series by classical orthogonal polynomials
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 1
EP  - 254
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_3_a0/
LA  - ru
ID  - DEMR_2015_3_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Mixed series by classical orthogonal polynomials
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 1-254
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2015_3_a0/
%G ru
%F DEMR_2015_3_a0
I. I. Sharapudinov. Mixed series by classical orthogonal polynomials. Daghestan Electronic Mathematical Reports, Tome 3 (2015), pp. 1-254. http://geodesic.mathdoc.fr/item/DEMR_2015_3_a0/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1,2, Nauka, M., 1973, 1974 | MR

[2] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[3] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR

[4] Bernshtein S.N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1954, 7–106

[5] Sachkov V.N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977 | MR

[6] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979.

[7] Erdelyi A., “Asymptotic solutions of differential equations with transition points or singularites”, J. Math. Phys., 1960, no. 1, 16–26, MR 22 $\sharp$ 2773 | DOI | MR | Zbl

[8] Erdelyi A., “Asymptotic forms for Laguerre polynomials”, J. Indian Math. Soc., 1960, no. 24, 235–250, MR 23 $\sharp$ A1073 | MR

[9] Askey R., Wainger S., “Mean convergence of expansions in Lagerre and Hermite series”, Amer. J. Mathem., 1965, no. 87, 695–708 | DOI | MR | Zbl

[10] Muckenhaupt B., “Mean convergence of Hermit and Lagerre series. I.”, Trans. Amer. Mathem. Soc., 1970, no. 147, 419–431 | DOI | MR

[11] Muckenhaupt B., “Mean convergence of Hermit and Lagerre series. II.”, Trans. Amer. Mathem. Soc., 1970, no. 147, 433–460 | DOI | MR

[12] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., v. 3, Izd. AN SSSR, M., 1948 | MR

[13] Markov A.A., O nekotorykh prilozheniyakh algebraicheskikh nepreryvnykh drobei, SPb., 1884.

[14] Hahn W., “Uber orthogonalpolynomsisteme, die q–Differenzengleihungen genugen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl

[15] Nikiforov A.F.,Suslov S.K., Uvarov V.B., Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, Nauka, M., 1985 | MR

[16] Askey R., Wilson J.A., “A set of orthogonal polynomials that generalyze the Racach coofficients or 6j–symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl

[17] Dunkl C., “A Krawtchouk Polynomials Addition Theorem and Treath Products of Simmetric Grups”, Indiana Univ. Math. J., 1976, no. 25, 335–358 | DOI | MR | Zbl

[18] Krawtchouk M.F., “Sur une generalisation des polynomes d Hermite”, Comptes Rendus de 1 Acad. des. Sc. Paris., 189 (1929), 620–622 | Zbl

[19] Stanton D., “Three addition theorems for some q–Krawtchouk polynomials”, Geometriae Dedicate, 1981, no. 10, 403–425 | DOI | MR | Zbl

[20] Weber M., Erdeleyi A., “On the finite difference analogue of Rodrigues formula”, Amer. Math. Month., 59 (1952), 163–168 | DOI | MR | Zbl

[21] Sharapudinov I.I., “Asimptoticheskie svoistva ortogonalnykh mnogochlenov Khana diskretnoi peremennoi”, Matem. sbornik, 180:9 (1989), 1259–1277 | Zbl

[22] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947., 236 – 238 | MR

[23] Karlin S., McGregor J.L., “The Hahn polinomials, formulas and an application”, Scripta Math., 26:1, 33–46 | MR | Zbl

[24] Sharapudinov I.I., Priblizhenie funktsii summami Fure po ortogonalnym mnogochlenam Chebysheva diskretnogo peremennogo, Dep. v VINITI, No 3137–80, M., 1980, 44 pp.

[25] Sharapudinov I.I., “Funktsiya Lebega chastnykh summ Fure po polinomam Khana”, Funktsionalnyi analiz, teoriya funktsii i ikh prilozheniya, Izd-vo Dag.gos.un-ta, Makhachkala, 1982, 132–144

[26] Sharapudinov I.I., “Nekotorye svoistva mnogochlenov, ortogonalnykh na konechnoi sisteme tochek”, Izv. vuzov. Matematika, 1983, no. 5, 85–88 | Zbl

[27] Sharapudinov I.I., “Vesovye otsenki mnogochlenov Khana”, Teoriya funktsii i priblizhenii, Tr. Saratovskoi zimnei shkoly (24 yanvarya – 5 fevralya 1982 g.)

[28] Sharapudinov I.I., “Asimptoticheskie svoistva i vesovye otsenki mnogochlenov Khana”, Izv.vuzov. Matematika, 1985, no. 5, 78–80 | MR | Zbl

[29] Sharapudinov I.I., “Nekotorye svoistva ortogonalnykh mnogochlenov Meiksnera”, Matem. zametki, 47:3 (1990), 135–137 | MR | Zbl

[30] Sharapudinov I.I., “Approksimativnye svoistva diskretnykh summ Fure”, Diskretnaya matematika, 2:2 (1990), 33–44 | MR | Zbl

[31] Sharapudinov I.I, “K asimptoticheskomu povedeniyu ortogonalnykh mnogochlenov Chebysheva diskretnoi peremennoi”, Matem. zametki, 48:6 (1990), 150–152 | MR | Zbl

[32] Sharapudinov I.I., “Asimptoticheskie svoistva i vesovye otsenki mnogochlenov Chebysheva–Khana”, Matem.sbornik, 183:3 (1991), 408–420

[33] Sharapudinov I.I., Nekotorye voprosy teorii ortogonalnykh sistem, Doktorskaya dissertatsiya, MIAN im. V.A. Steklova, M., 1991

[34] Sharapudinov I.I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestnik MGU. Seriya 1, 1992, no. 1, 29–35 | MR

[35] Meixner J., “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Function”, Journ. of the London Mathematical Sociate, 9 (1934), 6–13 | DOI | MR

[36] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii., Izdatelstvo moskovskogo universiteta, M., 1976 | MR

[37] Telyakovskii S.A., “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70:2 (1966.), 252–265

[38] Chang R., Chen K., Wang M., “A new approach to the parameter estimation of linear time invariant delayed systems via modified Laguerre polynomials”, Int. Journal Systems sci., 16:12 (1985), 1505–1515 | DOI | Zbl

[39] Clement P.R., “Laguerre functions in Signal Analysis and Parameter Identification”, Journal of Franclin Institute, 313:2 (1982), 85–95 | DOI | Zbl

[40] Krylov V.I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR

[41] Nikolskii S.M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[42] Dooge J.C.I., Garvey B.J., “The use of Meixner functions in the identification of heavily–damped system”, Proc. of the Roy. Irich Academy, 78 (1978), 157–179, A.N.I. | MR | Zbl

[43] Hwang R., Shih Y., “Parameter identifikation of discrete sistems via diskrete Legendre polynomials”, Computers Electrical Engineering, 12:3/4 (1986), 155–160 | DOI | MR | Zbl

[44] Markett C., “Mean Cesaro summability of Laguerre expansion and norm estimate with shifted parameter”, Anal. Math., 8 (1982), 19–37 | DOI | MR | Zbl

[45] Sharapudinov I.I., “Ob asimptotike i vesovykh otsenkakh polinomov Meiksnera, ortogonalnykh na setke $\{0,\delta,2\delta,\ldots\}$”, Matem. zametki, 62:4 (1997), 603–616 | DOI | MR | Zbl

[46] Sharapudinov I.I., “Ob asimptotike i vesovykh otsenkakh polinomov Meiksnera”, Matem. zametki, 62:4 (1997), 603–616 | DOI | MR | Zbl

[47] Dzhamalov A.Sh., “Ob asimptotike polinomov Meiksnera”, Matem. zametki, 62:4 (1997), 624–625 | DOI | MR | Zbl

[48] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh. Teoriya i prilozheniya, Izdatelstvo Dag. gos. ped. Un-ta, Makhachkala, 1997

[49] Gasper G., “Positiviti and special function”, Theory and appl. Spec. Funct., ed. Richard A.Askey, 1975, 375–433 | DOI | MR | Zbl

[50] Agakhanov S.A., Natanson G.I., “Funktsiya Lebega summ Fure – Yakobi”, Vestnik Leningr. un-ta, 1968, no. 1, 11–13 | MR

[51] Badkov V.M., “Otsenki funktsii Lebega i ostatka ryada Fure – Yakobi”, Sib. Mat. Zh., 9:6 (1968), 1263–1283 | MR | Zbl

[52] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[53] Banai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR

[54] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[55] Gopengauz I.Z., “K teoreme A.F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl

[56] Sharapudinov I. I., “Smeshannye ryady po polinomam, ortogonalnym na diskretnykh setkakh”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezhskaya zimnyaya matematicheskaya shkola, Tezisy dokladov (26 yanvarya – 2 fevralya 2003, g. Voronezh), 285–286

[57] Gadzhieva Z.D., Smeshannye ryady po polinomam Meiksnera, Kandidatskaya dissertatsiya, Saratovskii gos. un-t, Saratov., 2004

[58] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Nauka, M., 1987 | MR

[59] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983. | MR