Inversion formulas for tensor imaging on incomplete data
Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article new inverse formulas for a ray transform of symmetric tensor fields with incomplete data are given. The Radon transform of Saint-Venant operator of tensor field is uniquely determined when the line integrals of the field along lines which form an $n$-dimensional complexes in the space $\mathbb{R}^n$ are given. Three most common complexes are considered: the family of lines intersecting a given curve, intersecting a given curve at infinity and tangent a given surface. In the case of the complex of lines intersecting a curve at infinite the formula, containing only two-fold integration is obtained.
Keywords: symmetric tensor field, ray transform, reconstruction formula, complex of lines, Radon transform, solenoidal part, Saint-Venant operator.
@article{DEMR_2014_2_a5,
     author = {Z. G. Medzhidov},
     title = {Inversion formulas for tensor imaging on incomplete data},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_2_a5/}
}
TY  - JOUR
AU  - Z. G. Medzhidov
TI  - Inversion formulas for tensor imaging on incomplete data
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 75
EP  - 86
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_2_a5/
LA  - ru
ID  - DEMR_2014_2_a5
ER  - 
%0 Journal Article
%A Z. G. Medzhidov
%T Inversion formulas for tensor imaging on incomplete data
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 75-86
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_2_a5/
%G ru
%F DEMR_2014_2_a5
Z. G. Medzhidov. Inversion formulas for tensor imaging on incomplete data. Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 75-86. http://geodesic.mathdoc.fr/item/DEMR_2014_2_a5/

[1] Grangeat P., “Mathematical Framework of Cone-beam 3D-Reconstruction via the First Derivative of the Radon Transform”, Lecture Notes in Mathematics, 1497, Springer, Berlin, 1991, 66–97 | DOI | MR

[2] Denisjuk A., “Inversion of the X-ray transform for 3D symmetric tensor fields with sources on a curve”, Inverse problems, 22 (2006), 399–411 | DOI | MR | Zbl

[3] Gelfand I.M., Gindikin S.G., Graev M.I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, KGU, M., 2010 | MR

[4] Palamodov V.P., “Reconstruction of a differential form from Doppler transform”, SIAM J. Math. Anal., 41:4 (2009), 1713–1720 | DOI | MR | Zbl

[5] Palamodov V.P., Reconstructive Integral Geometry, Tel Aviv University, 2003 | MR

[6] Sharafutdinov V.A., “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse problems, 2007, no. 23, 2603–2627 | DOI | MR | Zbl

[7] Sharafutdinov V.A., Integral Geometry of Tensor Fields, VSP, Utrech, 1994 | MR

[8] Medzhidov Z.G., “Obraschenie luchevogo preobrazovaniya simmetrichnykh tenzornykh polei i preobrazovaniya Radona differentsialnykh form po nepolnym dannym”, Dagestanskie elektronnye matematicheskie izvestiya, 2014, no. 1, 56–69

[9] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR

[10] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir,, M., 1990 | MR