On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid
Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 1-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear system in which the input signal $y = y(t)$ and the output $x = x(t)$ are related by the equation $x^{(r)}(t)=\sum_{\nu=0}^{r-1}a_\nu(t)x^{(\nu)}(t)+\sum_{\mu=0}^s b_\mu(t)y^{(\mu)}(t)$ is considered. The goal is to find the unknown variable coefficients $a_\nu(t)$ $(\nu=0,\ldots,r-1)$ and $b_\mu(t)$ $(\mu=0,\ldots,s)$ in case when the signal values are given in the nodes of a uniform grid $\Omega_N=\{t_j=-1+jh\}_{j=0}^{N-1}$, where $h=\frac2{N-1}$. It is assumed that the values of $x(t)$ and $y(t)$ are obtained as a result of experimental observations and are noised. For pretreatment of discrete information we apply «anti-aliasing» based on the use of Chebyshev polynomials orthogonal on a uniform grid $\Omega_N$. On the next step we switched from the original equation to the dual equation by representing of all figuring there functions (including derivatives) in the form of series by Chebyshev polynomials of the first kind $C_n(t)=\cos{(n\arccos{t})}$. The result is a system of linear equations for the Fourier – Chebyshev coefficients of $a_\nu(t)$ and $b_\nu(t)$. Solving this system numerically, we obtain the variable coefficients of the original system of equations, thus completing the solution of the identification problem.
Keywords: Chebyshev polynomials of the first kind; Chebyshev polynomials orhtogonal on uniform grid; linear systems; signal processing; identification problem.
@article{DEMR_2014_2_a0,
     author = {I. I. Sharapudinov and M. S. Sultanakhmedov and T. N. Shakh-Emirov and T. I. Sharapudinov and M. G. Magomed-Kasumov and G. G. Akniev and R. M. Gadzhimirzaev},
     title = {On the identification of the parameters of linear systems using {Chebyshev} polynomials of the first kind and {Chebyshev} polynomials orthogonal on a uniform grid},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--32},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_2_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - M. S. Sultanakhmedov
AU  - T. N. Shakh-Emirov
AU  - T. I. Sharapudinov
AU  - M. G. Magomed-Kasumov
AU  - G. G. Akniev
AU  - R. M. Gadzhimirzaev
TI  - On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 1
EP  - 32
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_2_a0/
LA  - ru
ID  - DEMR_2014_2_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A M. S. Sultanakhmedov
%A T. N. Shakh-Emirov
%A T. I. Sharapudinov
%A M. G. Magomed-Kasumov
%A G. G. Akniev
%A R. M. Gadzhimirzaev
%T On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 1-32
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_2_a0/
%G ru
%F DEMR_2014_2_a0
I. I. Sharapudinov; M. S. Sultanakhmedov; T. N. Shakh-Emirov; T. I. Sharapudinov; M. G. Magomed-Kasumov; G. G. Akniev; R. M. Gadzhimirzaev. On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid. Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 1-32. http://geodesic.mathdoc.fr/item/DEMR_2014_2_a0/

[1] Chebyshev P.L., “O nepreryvnykh drobyakh (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR

[2] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 236–238 | MR

[3] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshikh kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 314–334 | MR

[4] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 357–374 | MR

[5] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR

[6] Sharapudinov I.I., Mnogochleny, ortogonalnye na diskretnykh setkakh, Izd-vo Dag. gos. ped. un–ta, Makhachkala, 1997

[7] Gasper G., “Positiviti and special function”, Theory and appl. Spec. Funct., 1975, 375–433 | DOI | MR | Zbl

[8] Sharapudinov T.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 2007, no. 29, 12-23

[9] Sege G., Ortogonalnye mnogochleny, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moskva, 1962, 500 pp.

[10] Sharapudinov I.I., “O skhodimosti metoda naimenshikh kvadratov”, Matem. zametki, 53:3 (1993), 131–143 | MR | Zbl

[11] Sharapudinov I.I., “Asimptoticheskie svoistva i vesovye otsenki dlya ortogonalnykh mnogochlenov Chebysheva–Khana”, Matem. sb., 182:3 (1991), 408-420 | Zbl

[12] Sharapudinov I.I., “Asimptoticheskie svoistva ortogonalnykh mnogochlenov Khana diskretnoi peremennoi”, Matem. sb., 180:9 (1989), 1259–1277 | Zbl

[13] Sharapudinov I.I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestnik MGU. Seriya 1, 1992, no. 1, 29-35 | MR

[14] Sharapudinov I.I., “Approksimativnye svoistva operatorov $\mathscr Y_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl

[15] Sharapudinov I.I., “Priblizhenie diskretnykh funktsii i mnogochleny Chebysheva, ortogonalnye na ravnomernoi setke”, Matem. zametki, 67:3 (2000), 460–470 | DOI | MR | Zbl

[16] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam. Teoriya i prilozheniya, DNTs RAN, Makhachkala, 2004, 276 pp.