Polynomials, orthogonal on grids from unit circle and number axis
Daghestan Electronic Mathematical Reports, Tome 1 (2014), pp. 1-55

Voir la notice de l'article provenant de la source Math-Net.Ru

In current paper we investigate the asymptotic properties of polynomials, orthogonal on arbitrary (not necessarily uniform) grids from an unit circle or segment $[-1,1]$. When the grid of nodes $\Omega_N^T=\left\{e^{i\theta_0},e^{i\theta_1},\ldots,e^{i\theta_{N-1}}\right\}$ belongs to the unit circle $|w|=1$ we consider polynomials $\varphi_{0,N}(w),\varphi_{1,N}(w),\ldots,$ $\varphi_{N-1,N}(w)$, orthogonal in the following sense: $$ \frac1{2\pi}\int\limits_{-\pi}^\pi \varphi_{n,N}(e^{i\theta})\overline{\varphi_{m,N}(e^{i\theta})}\,d\sigma_N(\theta)= $$ $$ \frac1{2\pi}\sum\limits^{N-1}_{j=0} \varphi_{n,N}(e^{i\theta_j})\overline{\varphi_{m,N}(e^{i\theta_j})} \Delta\sigma_N(\theta_j)=\delta_{nm}, $$ where $\Delta\sigma_N(\theta_j)=\sigma_N(\theta_{j+1})-\sigma_N(\theta_j), j=0,\ldots,N-1$. In case, when $\Delta\sigma_N(\theta_j)=h(\theta_j)\Delta\theta_j$, the asymptotic formula for $\varphi_{n,N}(w)$ is established, which in turn, used for investigation of asymptotic properties of polynomials which are orthogonal on grids from $[-1,1]$.
Keywords: unit circle, number axis, polynomials orthogonal on grids, asymptotic formulas.
@article{DEMR_2014_1_a0,
     author = {I. I. Sharapudinov},
     title = {Polynomials, orthogonal on grids from unit circle and number axis},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--55},
     publisher = {mathdoc},
     volume = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_1_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Polynomials, orthogonal on grids from unit circle and number axis
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 1
EP  - 55
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_1_a0/
LA  - ru
ID  - DEMR_2014_1_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Polynomials, orthogonal on grids from unit circle and number axis
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 1-55
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_1_a0/
%G ru
%F DEMR_2014_1_a0
I. I. Sharapudinov. Polynomials, orthogonal on grids from unit circle and number axis. Daghestan Electronic Mathematical Reports, Tome 1 (2014), pp. 1-55. http://geodesic.mathdoc.fr/item/DEMR_2014_1_a0/