Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library
@article{DEME_1988__29_a4, author = {M. V. D. Burmester and Th. G. Exarhakos}, title = {The function g(h) for which {|A(G)|p>=p^h} whenever {|G|>=p^g(h)} , {G} a finite {P-group}}, journal = {\ensuremath{\Delta}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\tau}\ensuremath{\acute\iota}o \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} E\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} E\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma} }, pages = {27-44}, publisher = {mathdoc}, volume = {29}, year = {1988}, language = {gr}, url = {http://geodesic.mathdoc.fr/item/DEME_1988__29_a4/} }
TY - JOUR AU - M. V. D. Burmester AU - Th. G. Exarhakos TI - The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group JO - Δελτίο της Ελληνικής Μαθηματικής Εταιρίας PY - 1988 SP - 27 EP - 44 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEME_1988__29_a4/ LA - gr ID - DEME_1988__29_a4 ER -
%0 Journal Article %A M. V. D. Burmester %A Th. G. Exarhakos %T The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group %J Δελτίο της Ελληνικής Μαθηματικής Εταιρίας %D 1988 %P 27-44 %V 29 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEME_1988__29_a4/ %G gr %F DEME_1988__29_a4
M. V. D. Burmester; Th. G. Exarhakos. The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας , Tome 29 (1988), p. 27-44. http://geodesic.mathdoc.fr/item/DEME_1988__29_a4/