Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library
@article{DEME_1961__02B_a2, author = {X. M. K\ensuremath{\varepsilon}\ensuremath{\varphi}\ensuremath{\acute\alpha}\ensuremath{\lambda}\ensuremath{\alpha}}, title = {M\ensuremath{\iota}\ensuremath{\alpha} \ensuremath{\sigma}\ensuremath{\upsilon}\ensuremath{\nu}\ensuremath{\theta}\ensuremath{\acute\eta}\ensuremath{\kappa}\ensuremath{\eta} \ensuremath{\acute\omega}\ensuremath{\sigma}\ensuremath{\tau}\ensuremath{\varepsilon} \ensuremath{\nu}\ensuremath{\alpha} \ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\iota} \ensuremath{\acute\epsilon}\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\varsigma} \ensuremath{\alpha}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\iota}o\ensuremath{\varsigma} \ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\mu}\'{o}\ensuremath{\varsigma} \ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\zeta}\ensuremath{\alpha} \ensuremath{\delta}o\ensuremath{\theta}\ensuremath{\acute\epsilon}\ensuremath{\nu}\ensuremath{\tau}o\ensuremath{\varsigma} \ensuremath{\pi}o\ensuremath{\lambda}\ensuremath{\upsilon}\ensuremath{\omega}\ensuremath{\nu}\ensuremath{\acute\upsilon}\ensuremath{\mu}o\ensuremath{\upsilon}}, journal = {\ensuremath{\Delta}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\tau}\ensuremath{\acute\iota}o \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} E\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} E\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma} }, pages = {117-119}, publisher = {mathdoc}, volume = {02B}, year = {1961}, language = {gr}, url = {http://geodesic.mathdoc.fr/item/DEME_1961__02B_a2/} }
Χ. Μ. Κεφάλα. Μια συνθήκη ώστε να είναι ένας ακέραιος αριθμός ρίζα δοθέντος πολυωνύμου. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας , 02B (1961), p. 117-119. http://geodesic.mathdoc.fr/item/DEME_1961__02B_a2/