Probability that n Random Points Are in Convex Position.
Discrete & computational geometry, Tome 13 (1995) no. 3-4, pp. 637-643.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : random points, convex polygon, combinatorial treatment of approximating grid versions
@article{DCG_1995__13_3-4_131388,
     author = {P. Valtr},
     title = {Probability that n {Random} {Points} {Are} in {Convex} {Position.}},
     journal = {Discrete & computational geometry},
     pages = {637--643},
     publisher = {mathdoc},
     volume = {13},
     number = {3-4},
     year = {1995},
     zbl = {0820.60007},
     url = {http://geodesic.mathdoc.fr/item/DCG_1995__13_3-4_131388/}
}
TY  - JOUR
AU  - P. Valtr
TI  - Probability that n Random Points Are in Convex Position.
JO  - Discrete & computational geometry
PY  - 1995
SP  - 637
EP  - 643
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DCG_1995__13_3-4_131388/
ID  - DCG_1995__13_3-4_131388
ER  - 
%0 Journal Article
%A P. Valtr
%T Probability that n Random Points Are in Convex Position.
%J Discrete & computational geometry
%D 1995
%P 637-643
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DCG_1995__13_3-4_131388/
%F DCG_1995__13_3-4_131388
P. Valtr. Probability that n Random Points Are in Convex Position.. Discrete & computational geometry, Tome 13 (1995) no. 3-4, pp. 637-643. http://geodesic.mathdoc.fr/item/DCG_1995__13_3-4_131388/