Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2023_30_4_a4, author = {D. S. Malyshev and O. I. Duginov}, title = {A complete complexity dichotomy of~the~edge-coloring problem for~all~sets~of~8-edge forbidden subgraphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {91--109}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2023_30_4_a4/} }
TY - JOUR AU - D. S. Malyshev AU - O. I. Duginov TI - A complete complexity dichotomy of~the~edge-coloring problem for~all~sets~of~8-edge forbidden subgraphs JO - Diskretnyj analiz i issledovanie operacij PY - 2023 SP - 91 EP - 109 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2023_30_4_a4/ LA - ru ID - DA_2023_30_4_a4 ER -
%0 Journal Article %A D. S. Malyshev %A O. I. Duginov %T A complete complexity dichotomy of~the~edge-coloring problem for~all~sets~of~8-edge forbidden subgraphs %J Diskretnyj analiz i issledovanie operacij %D 2023 %P 91-109 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2023_30_4_a4/ %G ru %F DA_2023_30_4_a4
D. S. Malyshev; O. I. Duginov. A complete complexity dichotomy of~the~edge-coloring problem for~all~sets~of~8-edge forbidden subgraphs. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 4, pp. 91-109. http://geodesic.mathdoc.fr/item/DA_2023_30_4_a4/
[1] Holyer I., “The NP-completeness of edge-coloring”, SIAM J. Computing, 10:4 (1981), 718–720 | DOI | MR | Zbl
[2] V. G. Vizing, “On an estimate of the chromatic index of a $p$-graph”, Discrete Analysis, 3, Inst. Mat. SO AN SSSR, Novosibirsk, 1964, 25–30 (Russian)
[3] Galby E., Lima P. T., Paulusma D., Ries B., “Classifying $k$-edge colouring for $H$-free graphs”, Inf. Process. Lett., 146 (2019), 39–43 | DOI | MR | Zbl
[4] D. S. Malyshev, “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. Elektron. Mat. Izv., 11 (2014), 811–822 | MR | Zbl
[5] D. S. Malyshev, “Complexity classification of the edge coloring problem for a family of graph classes”, Discrete Math. Appl., 27:2 (2017), 97–101 | DOI | DOI | MR | Zbl
[6] D. S. Malyshev, “Complete complexity dichotomy for $7$-edge forbidden subgraphs in the edge coloring problem”, J. Appl. Ind. Math., 14:4 (2020), 706–721 | DOI | MR | Zbl
[7] D. S. Malyshev, O. I. Duginov, “Some cases of polynomial solvability for the edge colorability problem generated by forbidden $8$-edge subcubic forests”, J. Appl. Ind. Math., 16:2 (2022), 276–291 | DOI | MR | MR | Zbl
[8] Barnaby M., Paulusma D., Siani S., “Colouring graphs of bounded diameter in the absence of small cycles”, Discrete Appl. Math., 314:15 (2022), 150–161 | MR | Zbl
[9] Bonomo F., Chudnovsky M., Maceli P., Schaudt O., Stein M., Zhong M., “Three-coloring and list three-coloring of graphs without induced paths on seven vertices”, Combinatorica, 38:4 (2018), 779–801 | DOI | MR | Zbl
[10] Broersma H. J., Golovach P. A., Paulusma D., Song J., “Updating the complexity status of coloring graphs without a fixed induced linear forest”, Theor. Comput. Sci., 414:1 (2012), 9–19 | DOI | MR | Zbl
[11] Cameron K., Huang S., Penev I., Sivaraman V., “The class of $(P_7,C_4,C_5)$-free graphs: Decomposition, algorithms, and $\chi$-boundedness”, J. Graph Theory, 93:4 (2019), 503–552 | DOI | MR
[12] Cameron K., da Silva M., Huang S., Vuskovic K., “Structure and algorithms for (cap, even hole)-free graphs”, Discrete Math., 341 (2018), 463–473 | DOI | MR | Zbl
[13] Dai Y., Foley A., Hoàng C., “On coloring a class of claw-free graphs: To the memory of Frédéric Maffray”, Electron. Notes Theor. Comput. Sci., 346 (2019), 369–377 | DOI | MR
[14] Fraser D., Hamela A., Hoàng C., Holmes K., LaMantia T., “Characterizations of $(4K_1,C_4,C_5)$-free graphs”, Discrete Appl. Math., 231 (2017), 166–174 | DOI | MR | Zbl
[15] Golovach P., Johnson M., Paulusma D., Song J., “A survey on the computational complexity of coloring graphs with forbidden subgraphs”, J. Graph Theory, 84 (2017), 331–363 | DOI | MR | Zbl
[16] Golovach P. A., Paulusma D., Song J., “4-Coloring $H$-free graphs when $H$ is small”, Discrete Appl. Math., 161:1–2 (2013), 140–150 | DOI | MR | Zbl
[17] Hoàng C., Kamiński M., Lozin V. V., Sawada J., Shu X., “Deciding $k$-colorability of $P_5$-free graphs in polynomial time”, Algorithmica, 57:1 (2010), 74–81 | DOI | MR | Zbl
[18] Hoàng C., Lazzarato D., “Polynomial-time algorithms for minimum weighted colorings of $(P_5,\overline{P}_5)$-free graphs and similar graph classes”, Discrete Appl. Math., 186 (2015), 105–111 | DOI | MR
[19] Huang S., “Improved complexity results on $k$-coloring $P_t$-free graphs”, Eur. J. Comb., 51 (2016), 336–346 | DOI | MR | Zbl
[20] Karthick T., Maffray F., Pastor L., “Polynomial cases for the vertex coloring problem”, Algorithmica, 81:3 (2017), 1053–1074 | DOI | MR
[21] Klimošová T., Malík J., Masařík T., Novotná J., Paulusma D., Slívová V., “Colouring $(P_r+P_s)$-free graphs”, Algorithmica, 82:7 (2020), 1833–1858 | DOI | MR | Zbl
[22] Král' D., Kratochvíl J., Tuza Z., Woeginger G., “Complexity of coloring graphs without forbidden induced subgraphs”, Proc. 27th Int. Workshop Graph-Theoretic Concepts in Computer Science (Boltenhagen, Germany, June 14–16, 2001), Lect. Notes Comput. Sci., 2204, Springer, Heidelberg, 2001, 254–262 | DOI | MR | Zbl
[23] Lozin V. V., Malyshev D. S., “Vertex coloring of graphs with few obstructions”, Discrete Appl. Math., 216 (2017), 273–280 | DOI | MR | Zbl
[24] Malyshev D. S., “The coloring problem for classes with two small obstructions”, Optim. Lett., 8:8 (2014), 2261–2270 | DOI | MR | Zbl
[25] Malyshev D. S., “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”, Discrete Math., 338:11 (2015), 1860–1865 | DOI | MR | Zbl
[26] Malyshev D. S., “Two cases of polynomial-time solvability for the coloring problem”, J. Comb. Optim., 31:2 (2016), 833–845 | DOI | MR | Zbl
[27] Malyshev D. S., “The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs”, Graphs Comb., 33:4 (2017), 1009–1022 | DOI | MR | Zbl
[28] Malyshev D. S., “Polynomial-time approximation algorithms for the coloring problem in some cases”, J. Comb. Optim., 33 (2017), 809–813 | DOI | MR | Zbl
[29] Malyshev D. S., “The weighted coloring problem for two graph classes characterized by small forbidden induced structures”, Discrete Appl. Math., 47 (2018), 423–432 | DOI | MR
[30] Malyshev D. S., “The vertex colourability problem for \{claw, butterfly\}-free graphs is polynomial-time solvable”, Optim. Lett., 15:2 (2021), 311–326 | DOI | MR | Zbl
[31] Malyshev D. S., Lobanova O. O., “Two complexity results for the vertex coloring problem”, Discrete Appl. Math., 219 (2017), 158–166 | DOI | MR | Zbl
[32] Malyshev D. S., Pristavchenko O. V., “An intractability result for the vertex 3-colourability problem”, Optim. Lett., 16 (2022), 1403–1409 | DOI | MR | Zbl
[33] Malyshev D. S., Razvenskaya O. O., Pardalos P. M., “The computational complexity of weighted vertex coloring for $\{P_5,K_{2,3},K_{2,3}^+\}$-free graphs”, Optim. Lett., 15:1 (2021), 137–152 | DOI | MR | Zbl
[34] O. O. Razvenskaya, D. S. Malyshev, “Efficient solvability of the weighted vertex coloring problem for some two hereditary graph classes”, J. Appl. Ind. Math., 15:1 (2021), 97–117 | DOI | MR | MR | Zbl
[35] D. V. Sirotkin, D. S. Malyshev, “On the complexity of the vertex $3$-coloring problem for the hereditary graph classes with forbidden subgraphs of small size”, J. Appl. Ind. Math., 12:4 (2018), 759–769 | DOI | MR | Zbl
[36] Spirkl S., Chudnovsky M., Zhong M., “Four-coloring $P_6$-free graphs”, Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms (San Diego, CA, USA, Jan. 6–9, 2019), SIAM, Philadelphia, PA, 2019, 1239–1256 | MR | Zbl
[37] Schrijver A., Combinatorial optimization: Polyhedra and efficiency, Algorithms Comb., 24, Springer, Heidelberg, 2003, 1882 pp. | MR | Zbl
[38] Kamiński M., Lozin V. V., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. Discrete Math., 2:1 (2007), 61–66 | MR | Zbl