Enumeration of labeled bi-block graphs
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 4, pp. 24-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bi-block graph is a connected graph in which all blocks are complete bipartite graphs. Labeled bi-block graphs and bridgeless bi-block graphs are enumerated exactly and asymptotically by the number of vertices. It is proved that almost all labeled connected bi-block graphs have no bridges. In addition, planar bi-block graphs are enumerated, and an asymptotic estimate is found for the number of such graphs. Tab. 1, bibliogr. 12.
Keywords: enumeration, labeled graph, bridgeless graph, complete bipartite graph, planar graph, block, bi-block graph, random graph, asymptotics.
@article{DA_2023_30_4_a1,
     author = {V. A. Voblyi},
     title = {Enumeration of labeled bi-block graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_4_a1/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Enumeration of labeled bi-block graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 24
EP  - 34
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_4_a1/
LA  - ru
ID  - DA_2023_30_4_a1
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Enumeration of labeled bi-block graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 24-34
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_4_a1/
%G ru
%F DA_2023_30_4_a1
V. A. Voblyi. Enumeration of labeled bi-block graphs. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 4, pp. 24-34. http://geodesic.mathdoc.fr/item/DA_2023_30_4_a1/

[1] Hou Y., Sun Y., “Inverse of distance matrix of a bi-block graphs”, Linear Multilinear Algebra, 64:8 (2016), 1509–1517 | DOI | MR | Zbl

[2] McDiarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Comb., 58 (2016), 96–106 | DOI | MR | Zbl

[3] Singh R., “Permanent, determinant, and rank bi-block graphs”, Aequationes Math., 94:1 (2020), 1–12 | DOI | MR | Zbl

[4] Das J., Mohanty S., “On spectral radius of bi-block graphs with given independence number $\alpha$”, Appl. Math. Comput., 402 (2021), 125912, 8 pp. | MR | Zbl

[5] Harary F., Robinson R. W., “Labeled bipartite blocks”, Can. J. Math., 31:1 (1979), 60–68 | DOI | MR | Zbl

[6] Gross J. L., Yellen J., Graph theory and its applications, Chapman and Hall/CRC, New York, 2005, 800 pp. | MR

[7] F. Harary, Graph Theory, Addison-Wesley, London, 1969 | MR | Zbl

[8] V. A. Voblyi, “On a formula for the number of labeled connected graphs”, Diskretn. Anal. Issled. Oper., 19:4 (2012), 48–59 (Russian) | MR | Zbl

[9] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, John Wiley Sons, New York, 1983 | MR | MR | Zbl

[10] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | MR | Zbl

[11] Flajolet P., Sedgewick R., Analytic combinatorics, Camb. Univ. Press, Cambridge, UK, 2009, 810 pp. | MR | Zbl

[12] V. A. Voblyi, “On enumeration of labeled connected bridgeless graphs”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 223, VINITI RAN, M., 2023, 138–147 (Russian)