On trees with given diameter and extremal number of distance-$k$ independent sets
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 3, pp. 111-131
Voir la notice de l'article provenant de la source Math-Net.Ru
The set of vertices of a graph is called distance-$k$ independent if the distance between any two of its vertices is greater than some integer $k \geq 1.$ In this paper we describe $n$-vertex trees with a given diameter $d$ which have maximum and minimum possible number of distance-$k$ independent sets among all such trees. The maximum problem is solved for the case $1 k d \leq 5.$ The minimum problem is significantly more simple and is solved for all $1 k d n.$ Illustr. 4, bibliogr. 10.
Keywords:
tree, independent set, distance-$k$ independent set, diameter.
@article{DA_2023_30_3_a5,
author = {D. S. Taletskii},
title = {On trees with given diameter and extremal number of distance-$k$ independent sets},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {111--131},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2023_30_3_a5/}
}
TY - JOUR AU - D. S. Taletskii TI - On trees with given diameter and extremal number of distance-$k$ independent sets JO - Diskretnyj analiz i issledovanie operacij PY - 2023 SP - 111 EP - 131 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2023_30_3_a5/ LA - ru ID - DA_2023_30_3_a5 ER -
D. S. Taletskii. On trees with given diameter and extremal number of distance-$k$ independent sets. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 3, pp. 111-131. http://geodesic.mathdoc.fr/item/DA_2023_30_3_a5/