On a lower bound for the number of~bent~functions at the minimum distance from a~bent~function in the Maiorana--McfFrland class
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 3, pp. 57-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Bent functions at the minimum distance $2^n$ from a given bent function in $2n$ variables belonging to the Maiorana–McFarland class $\mathcal{M}_{2n}$ are investigated. We provide a criterion for a function obtained using the addition of the indicator of an $n$-dimensional affine subspace to a given bent function from $\mathcal{M}_{2n}$ to be a bent function as well. In other words, all bent functions at the minimum distance from a Maiorana–McFarland bent function are characterized. It is shown that the lower bound $2^{2n+1}-2^n$ for the number of bent functions at the minimum distance from $f \in \mathcal{M}_{2n}$ is not attained if the permutation used for constructing $f$ is not an APN function. It is proven that for any prime $n\geq 5$ there are functions from $\mathcal{M}_{2n}$ for which this lower bound is accurate. Examples of such bent functions are found. It is also established that the permutations of EA-equivalent functions from $\mathcal{M}_{2n}$ are affinely equivalent if the second derivatives of at least one of the permutations are not identically zero. Bibliogr. 31.
Keywords: bent function, Boolean function, Maiorana–McFarland class, lower bound
Mots-clés : minimum distance, affine equivalence.
@article{DA_2023_30_3_a2,
     author = {D. A. Bykov and N. A. Kolomeec},
     title = {On a lower bound for the number of~bent~functions at the minimum distance from a~bent~function in the {Maiorana--McfFrland} class},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {57--80},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_3_a2/}
}
TY  - JOUR
AU  - D. A. Bykov
AU  - N. A. Kolomeec
TI  - On a lower bound for the number of~bent~functions at the minimum distance from a~bent~function in the Maiorana--McfFrland class
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 57
EP  - 80
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_3_a2/
LA  - ru
ID  - DA_2023_30_3_a2
ER  - 
%0 Journal Article
%A D. A. Bykov
%A N. A. Kolomeec
%T On a lower bound for the number of~bent~functions at the minimum distance from a~bent~function in the Maiorana--McfFrland class
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 57-80
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_3_a2/
%G ru
%F DA_2023_30_3_a2
D. A. Bykov; N. A. Kolomeec. On a lower bound for the number of~bent~functions at the minimum distance from a~bent~function in the Maiorana--McfFrland class. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 3, pp. 57-80. http://geodesic.mathdoc.fr/item/DA_2023_30_3_a2/