Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2023_30_2_a5, author = {V. I. Shmyrev}, title = {Connection of two approaches {to~the~Fisher~model}}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {91--108}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2023_30_2_a5/} }
V. I. Shmyrev. Connection of two approaches to~the~Fisher~model. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 91-108. http://geodesic.mathdoc.fr/item/DA_2023_30_2_a5/
[1] Gale D., “The linear exchange model”, J. Math. Econ., 3:2 (1976), 205–209 | DOI | MR | Zbl
[2] Eaves B. C., “A finite algorithm for linear exchange model”, J. Math. Econ., 3:2 (1976), 197–203 | DOI | MR | Zbl
[3] V. I. Shmyrev, “On an approach to the determination of equilibrium in elementary exchange models”, Sov. Math. Dokl., 27:1 (1983), 230–233 | MR | Zbl
[4] V. I. Shmyrev, “An algorithm for the search of equilibrium in the linear exchange model”, Sib. Math. J., 26:2 (1985), 288–300 | DOI | MR | Zbl | Zbl
[5] V. I. Shmyrev, “A generalized linear exchange model”, J. Appl. Ind. Math., 2:1 (2008), 125–142 | DOI | MR | Zbl
[6] V. I. Shmyrev, “An algorithm for finding equilibrium in the linear exchange model with fixed budgets”, J. Appl. Ind. Math., 3:4 (2009), 505–518 | DOI | MR | Zbl
[7] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Ann. Math. Stat., 30:1 (1959), 165–168 | DOI | MR | Zbl
[8] Devanur N. R., Papadimitriou C. H., Saberi A., Vazirani V. V., “Market equilibrium via a primal-dual algorithm for a convex program”, J. ACM, 55:5 (2008), 22, 18 pp. | DOI | MR | Zbl
[9] Shmyrev V. I., “An algorithmic approach for searching an equilibrium in fixed budget exchange models”, Russian contributions to game theory and equilibrium theory, Theory Decis. Libr., Ser. C, 39, Springer, Heidelberg, 2006, 217–235 | DOI | Zbl
[10] Birnbaum B., Devanur N. R., Xiao L., “Distributed algorithms via gradient descent for Fisher markets”, Proc. 12th ACM Conf. Electronic Commerce (San Jose, CA, USA, June 5–9, 2011), ACM, New York, 2011, 127–136 | DOI
[11] Cole R., Devanur N., Gkatzelis V., Faira K. J., Mai T., Vazirani V. V., Yazdanbod S., “Convex program duality, Fisher markets, and Nash social welfare”, Proc. 2017 ACM Conf. Economics and Computation (Cambridge, MA, USA, June 26–30, 2017), ACM, New York, 2017, 459–460 | DOI
[12] V. I. Shmyrev, “Duality in linear economic models of exchange”, Tr. Inst. Mat. Mekh., 26, no. 3, 2020, 258–274 (Russian) | MR
[13] Svaiter B. F., “A new duality theory for mathematical programming”, J. Math. Program. Oper. Res., 60:8–9 (2011), 1209–1231 | MR | Zbl
[14] Shmyrev V. I., “Polyhedral complementarity approach to equilibrium problem in linear exchange models”, Optimization algorithms — Examples, IntechOpen, London, 2018, 27–46
[15] J. B. Dennis, Mathematical Programming and Electrical Networks, MIT Press, Cambridge, MA, 1959 | MR | MR
[16] V. I. Shmyrev, Introduction to Mathematical Programming, Inst. Kompyut. Issled., M., 2002 (Russian)
[17] R. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl