The problem of scheduling for~call-centre~operators
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 48-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to solving the problem of scheduling the work of the call center staff. A model of integer linear programming is formulated, the problem is shown to be NP-hard, and a genetic algorithm is proposed that takes into account the specifics of the problem. An experimental comparison of optimal solutions obtained using the CPLEX package with solutions found by the genetic algorithm is carried out. The computational experiment showed the practically acceptable accuracy of the solutions obtained by the genetic algorithm and its applicability to large-dimensional problems. Tab. 1, bibliogr. 18.
Keywords: call center, integer linear programming, genetic algorithm, computational complexity.
@article{DA_2023_30_2_a2,
     author = {A. V. Eremeev and M. A. Sakhno},
     title = {The problem of scheduling for~call-centre~operators},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_2_a2/}
}
TY  - JOUR
AU  - A. V. Eremeev
AU  - M. A. Sakhno
TI  - The problem of scheduling for~call-centre~operators
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 48
EP  - 66
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_2_a2/
LA  - ru
ID  - DA_2023_30_2_a2
ER  - 
%0 Journal Article
%A A. V. Eremeev
%A M. A. Sakhno
%T The problem of scheduling for~call-centre~operators
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 48-66
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_2_a2/
%G ru
%F DA_2023_30_2_a2
A. V. Eremeev; M. A. Sakhno. The problem of scheduling for~call-centre~operators. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 48-66. http://geodesic.mathdoc.fr/item/DA_2023_30_2_a2/