Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2023_30_1_a3, author = {I. M. Minarchenko}, title = {On search of {Nash} equilibrium in~quasiconcave~quadratic games}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {67--84}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2023_30_1_a3/} }
I. M. Minarchenko. On search of Nash equilibrium in~quasiconcave~quadratic games. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 67-84. http://geodesic.mathdoc.fr/item/DA_2023_30_1_a3/
[1] N. S. Vasil'ev, “Computing Nash equilibrium in quadratic games”, Computational Problems in Analysis of Large-Scale Systems, Problems of Cybernetics, 154, Nauchn. Sovet Kompleks. Probl. «Kibernetika» AN SSSR, M., 1989, 64–69 (Russian)
[2] A. S. Antipin, Gradient and Extra-Gradient Approaches in Bilinear Equilibrium Programming, Vychisl. Tsentr Dorodnitsyn. RAN, M., 2002 (Russian)
[3] Schiro D. A., Pang J.-S., Shanbhag U. V., “On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke's method”, Math. Program. Ser. A, 142 (2013), 1–46 | DOI | MR | Zbl
[4] Dreves A., “Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets”, Math. Methods Oper. Res., 80:2 (2014), 139–159 | DOI | MR | Zbl
[5] Haurie A., Krawczyk J. B., “Optimal charges on river effluent from lumped and distributed sources”, Environ. Model. Assess, 2:3 (1997), 177–189 | DOI
[6] Yin H., Shanbhag U. V., Mehta P. G., “Nash equilibrium problems with scaled congestion costs and shared constraints”, IEEE Trans. Autom. Control, 56:7 (2011), 1702–1708 | DOI | MR | Zbl
[7] Hobbs B. F., Pang J.-S., “Nash–Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints”, Oper. Res., 55:1 (2007), 113–127 | DOI | MR | Zbl
[8] Von Heusinger A., Kanzow C., “Relaxation methods for generalized Nash equilibrium problems with inexact line search”, J. Optim. Theory Appl., 143:1 (2009), 159–183 | DOI | MR | Zbl
[9] Dreves A., von Heusinger A., Kanzow C., Fukushima M., “A globalized Newton method for the computation of normalized Nash equilibria”, J. Glob. Optim., 56:2 (2013), 327–340 | DOI | MR | Zbl
[10] Rosen J. B., “Existence and uniqueness of equilibrium points for concave $n$-person games”, Econometrica, 33:3 (1965), 520–534 | DOI | MR | Zbl
[11] A. S. Antipin, “Equilibrium programming: Gradient methods”, Autom. Remote Control, 58:8 (1337), 1337–1347 | MR | Zbl
[12] S. I. Zukhovitskii, R. A. Polyak, and M. E. Primak, “Concave many-person games”, Ekon. Mat. Metody, 7:6 (1971), 888–900 (Russian) | MR
[13] Minarchenko I. M., “Search of Nash equilibrium in quadratic $n$-person game”, Discrete optimization and operations research, Proc. 9th Int. Conf. (Vladivostok, Russia, Sept. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Cham, 2016, 509–521 | DOI | MR | Zbl
[14] Kakutani S., “A generalization of Brouwer's fixed point theorem”, Duke Math. J., 8:3 (1941), 457–459 | DOI | MR | Zbl
[15] Kim W. K., Lee K. H., “The existence of Nash equilibrium in $n$-person games with $C$-concavity”, Comput. Math. Appl., 44:8 (2002), 1219–1228 | DOI | MR | Zbl
[16] Yen L. H., Muu L. D., “A parallel subgradient projection algorithm for quasiconvex equilibrium problems under the intersection of convex sets”, Optimization, 71:15 (2022), 4447–4462 | DOI | MR
[17] Cruz Neto J. X., Lopes J. O., Soares P. A., “A minimization algorithm for equilibrium problems with polyhedral constraints”, Optimization, 65:5 (2016), 1061–1068 | DOI | MR | Zbl
[18] Boyd S., Vandenberghe L., Convex optimization, Camb. Univ. Press, Cambridge, 2004, 716 pp. | MR | Zbl
[19] Mangasarian O. L., “Pseudo-convex functions”, J. SIAM Control. Ser. A, 3:2 (1965), 281–290 | MR | Zbl
[20] Avriel M., Diewert W. E., Schaible S., Zang I., Generalized concavity, SIAM, Philadelphia, 2010, 342 pp. | MR | Zbl
[21] Papadimitriou C. H., “On the complexity of the parity argument and other inefficient proofs of existence”, J. Comput. Syst. Sci., 48:3 (1994), 498–532 | DOI | MR | Zbl
[22] Kiwiel K. C., “Convergence and efficiency of subgradient methods for quasiconvex minimization”, Math. Program., 90:1 (2001), 1–25 | DOI | MR | Zbl
[23] Murray R., Swenson B., Kar S., “Revisiting normalized gradient descent: Fast evasion of saddle points”, IEEE Trans. Autom. Control, 64:11 (2019), 4818–4824 | DOI | MR | Zbl
[24] Nikaidô H., Isoda K., “Note on non-cooperative convex game”, Pac. J. Math., 5:S1 (1955), 807–815 | DOI | MR
[25] Khamisov O. V., “A global optimization approach to solving equilibrium programming problems”, Optimization and optimal control, Ser. Comput. Oper. Res., 1, World Scientific, Singapore, 2003, 155–164 | MR | Zbl
[26] Algorithmic game theory, Camb. Univ. Press, Cambridge, 2007, 754 pp. | Zbl
[27] V. P. Bulatov and T. I. Belykh, “Numerical solution methods for multi-extremal problems connected with inverse problems in mathematical programming”, Russ. Math., 51:6 (2007), 11–17 | DOI | MR | Zbl
[28] Minarchenko I. M., Khamisov O. V., “On minimization of a quadratic function with one negative eigenvalue”, Optim. Lett., 15:4 (2021), 1447–1455 | DOI | MR
[29] The advanced interactive multidimensional modeling system, AIMMS, Haarlem, 2022 (accessed Jan. 13, 2023) aimms.com
[30] IBM ILOG CPLEX optimization studio, IBM, Armonk, 2022 (accessed Jan. 13, 2023) ibm.com/products/ilog-cplex-optimization-studio