Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_4_a5, author = {Yu. V. Tarannikov}, title = {On the existence of {Agievich-primitive} partitions}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {104--123}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/} }
Yu. V. Tarannikov. On the existence of Agievich-primitive partitions. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 104-123. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/
[1] Heden O., “A survey of the different types of vector space partitions”, Discrete Math. Algorithms Appl., 4:1 (2012), 1–14 | DOI | MR
[2] Akman F., Sissokho P. A., “Reconfiguration of subspace partitions”, J. Comb. Des., 30:1 (2022), 5–18 | DOI | MR
[3] S. V. Avgustinovich, F. I. Solov'eva, and O. Heden, “Partitions of an $n$-cube into nonequivalent perfect codes”, Probl. Inf. Transm., 43:4 (2007), 310–315 | DOI | MR
[4] Agievich S. V., “Bent rectangles”, Boolean functions in cryptology and information security, 18, IOS Press, Amsterdam, 2008, 3–22 | MR
[5] I. P. Baksova and Yu. V. Tarannikov, “On a construction of bent functions”, Obozr. Prikl. Prom. Mat., 27:1 (2020) (Russian)
[6] I. P. Baksova and Yu. V. Tarannikov, “The bounds on the number of partitions of the space $\mathbf{F}_2^m$ into $k$-dimensional affine subspaces”, Mosc. Univ. Math. Bull., 77:3 (2022), 131–135 | DOI | MR
[7] Potapov V. N., Taranenko A. A., Tarannikov Yu. V., Asymptotic bounds on numbers of bent functions and partitions of the Boolean hypercube into linear and affine subspaces, Cornell Univ, Ithaca, NY, 2021, arXiv: 2108.00232
[8] O. A. Logachev, A. A. Salnikov, S. V. Smyshlyaev, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptography, Lenard, M., 2021 (Russian)
[9] Heden O., Solov'eva F., “Partitions of $\mathbf{F}^n$ into non-parallel Hamming codes”, Adv. Math. Commun., 3:4 (2009), 385–397 | DOI | MR
[10] Krotov D. S., “A partition of the hypercube into maximally nonparallel Hamming codes”, J. Comb. Des., 22:4 (2014), 179–187 | DOI | MR
[11] Rivest R. L., “On hash-coding algorithms for partial-match retrieval”, Proc. 15th Annu. Symp. Switching Automata Theory (New Orleans, USA, Oct. 14–16, 1974), IEEE, Piscataway, 1974, 95–103 | DOI | MR
[12] Brouwer A. E., “On associative block designs”, Combinatorics, Colloq. Math. Soc. J. Bolyai, 18, North-Holland, Amsterdam, 1978, 173–184 | MR
[13] Van Lint J. H., “$\{0,1,*\}$-Distance problems in combinatorics”, Surveys in Combinatorics, Inv. Pap. 10th British Comb. Conf. (Glasgow, UK, July 22–26, 1985), Lond. Math. Soc. Lect. Notes Ser., 103, Camb. Univ. Press, Cambridge, 1985, 113–135 | MR
[14] Potapov V. N., “DP-colorings of uniform hypergraphs and splittings of Boolean hypercube into faces”, Electron. J. Comb., 29:3 (2022), P3.37, 7 pp. | MR
[15] Van Lint J. H., Wilson R. M., A course in combinatorics, Camb. Univ. Press, Cambridge, 2001, 620 pp. | MR
[16] La Poutré J. A., “A theorem on associative block designs”, Discrete Math., 58:2 (1986), 205–208 | DOI | MR