On the existence of Agievich-primitive partitions
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 104-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any positive integer $m$ there exists the smallest positive integer $N=N_q(m)$ such that for $n>N$ there are no Agievich-primitive partitions of the space $\mathbf{F}_q^n$ into $q^m$ affine subspaces of dimension $n-m$. We give lower and upper bounds on the value $N_q(m)$ and prove that $N_q(2)=q+1$. Results of the same type for partitions into coordinate subspaces are established. Bibliogr. 16.
Keywords: affine subspace, bound, bent function, coordinate subspace, associative block design.
Mots-clés : partition of a space, face
@article{DA_2022_29_4_a5,
     author = {Yu. V. Tarannikov},
     title = {On the existence of {Agievich-primitive} partitions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {104--123},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/}
}
TY  - JOUR
AU  - Yu. V. Tarannikov
TI  - On the existence of Agievich-primitive partitions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 104
EP  - 123
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/
LA  - ru
ID  - DA_2022_29_4_a5
ER  - 
%0 Journal Article
%A Yu. V. Tarannikov
%T On the existence of Agievich-primitive partitions
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 104-123
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/
%G ru
%F DA_2022_29_4_a5
Yu. V. Tarannikov. On the existence of Agievich-primitive partitions. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 104-123. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a5/