Representations of normalized formulas
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 77-103

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of objects called $\Pi$-partitions is defined. These objects, in a certain well-defined sense, are the equivalents of formulas in a basis consisting of disjunction, conjunction and negation, in which negations are possible only over variables (normalized formulas). $\Pi$-partitions are seen as representations of formulas, just as equivalents and graphical representations of the same formulas can be considered $\Pi$-schemes. Some theory of such representations has been developed which is essentially a mathematical apparatus focused on describing a class of minimal normalized formulas implementing linear Boolean functions. Bibliogr. 18.
Keywords: Boolean function, normalized formula, representation of a formula, $\Pi$-scheme, lower bound for the complexity.
Mots-clés : minimal formula, $\Pi$-partition
@article{DA_2022_29_4_a4,
     author = {K. L. Rychkov},
     title = {Representations of normalized formulas},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {77--103},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - Representations of normalized formulas
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 77
EP  - 103
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/
LA  - ru
ID  - DA_2022_29_4_a4
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T Representations of normalized formulas
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 77-103
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/
%G ru
%F DA_2022_29_4_a4
K. L. Rychkov. Representations of normalized formulas. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 77-103. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/