Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_4_a4, author = {K. L. Rychkov}, title = {Representations of normalized formulas}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {77--103}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/} }
K. L. Rychkov. Representations of normalized formulas. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 77-103. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a4/
[1] V. M. Khrapchenko, “Complexity of the realization of a linear function in the class of $\Pi$-circuits”, Math. Notes Acad. Sci. USSR, 9:1 (1971), 21–23 | MR
[2] S. V. Yablonskii, “Realization of a linear function in the class of $\pi$-circuits”, Dokl. Akad. Nauk SSSR, Nov. Ser., 94:5 (1954), 805–806 | MR
[3] K. L. Rychkov, “Lower bounds on the complexity of parallel-sequential switching circuits that realize linear Boolean functions”, Discrete Analysis and Operation Research, Math. Its Appl., 355, Kluwer Acad. Publ., Dordrecht, 1996, 217–234 | MR
[4] D. Yu. Cherukhin, “To the question of a logical representation for the parity counter”, Neform. Nauka, 2009, no. 2, 14–23
[5] K. L. Rychkov, “Lower bounds on the formula complexity of a linear Boolean function”, Sib. Elektron. Mat. Izv., 11 (2014), 165–184 | MR
[6] K. L. Rychkov, “Complexity of the realization of a linear boolean function in the class of $\pi$-schemes”, J. Appl. Ind. Math., 12:3 (2018), 540–576 | DOI | MR
[7] K. L. Rychkov, “On minimal $\pi$-schemes for linear Boolean functions”, Sib. Adv. Math., 3:3 (1993), 172–185 | MR
[8] K. L. Rychkov, “Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating”, J. Appl. Ind. Math., 9:4 (2015), 580–587 | DOI | MR
[9] K. L. Rychkov, “On the perfectness of minimal regular partitions of the edge set of the n-dimensional cube”, J. Appl. Ind. Math., 13:4 (2019), 717–739 | DOI | MR | MR
[10] V. M. Khrapchenko, “A method of determining lower bounds for the complexity of $\Pi$-schemes”, Math. Notes Acad. Sci. USSR, 10:1 (1971), 474–479 | MR
[11] B. A. Subbotovskaya, “Realization of linear functions by formulas using $\vee$, $\wedge$, $^-$”, Dokl. Akad. Nauk, 136:3 (1961), 553–555 | MR
[12] V. M. Khrapchenko, “A simplified proof of a lower complexity estimate”, Discrete Math. Appl., 23:2 (2013), 171–174 | DOI | MR
[13] S. V. Avgustinovich, Yu. L. Vasil'ev, and K. L. Rychkov, “The computation complexity in the class of formulas”, J. Appl. Ind. Math., 6:4 (2012), 403–409 | DOI | MR | MR
[14] Yu. L. Vasil'ev and K. L. Rychkov, “A lower bound on formula size of a ternary linear function”, J. Appl. Ind. Math., 7:4 (2013), 490–499 | MR
[15] I. S. Sergeev, “Formula complexity of a linear function in a $k$-ary basis”, Math. Notes, 109:3 (2021), 445–458 | DOI | MR
[16] Razborov A., “Applications of matrix methods to the theory of lower bounds in computational complexity”, Combinatorica, 10:1 (1990), 81–93 | DOI | MR
[17] Karchmer M., Wigderson A., “Monotone circuits for connectivity require super-logarithmics depth”, SIAM J. Discrete Math., 3:2 (1990), 255–265 | DOI | MR
[18] Håstad J., “The shrinkage exponent is 2”, SIAM J. Comput., 27:1 (1998), 48–64 | DOI | MR