Application of SAT solvers to~the~problem of~finding vector Boolean functions with~required~cryptographic properties
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 38-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for finding an almost perfect nonlinear (APN) function. It is based on translation into SAT-problem and using SAT-solvers. We construct several formulas defining the conditions for finding an APN-function and introduce two representations of the function: Sparse and dense, which are used to describe the problem of finding one-to-one vectorial Boolean functions and APN-functions. We also propose a new method for finding a vectorial APN-function with additional properties. It is based on the idea of representing an unknown vectorial Boolean function as a sum of known APN-functions and two unknown Boolean functions: $\mathbf{G} = \mathbf{F}\oplus \mathbf{c}\cdot g_1 \oplus \mathbf{d}\cdot g_2$, where $\mathbf{F}$ is a known APN-function. It is shown that this method is more efficient than the direct construction of APN-function using SAT for dimensions 6 and 7. As a result, the method described in the work can prove the absence of cubic APN-functions in dimension 7 representable in the form of the sum described above. Tab. 3, bibliogr. 21.
Keywords: SAT-solver, cryptography, Boolean function, APN-function.
@article{DA_2022_29_4_a2,
     author = {A. E. Doronin and K. V. Kalgin},
     title = {Application of {SAT} solvers to~the~problem of~finding vector {Boolean} functions with~required~cryptographic properties},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {38--58},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a2/}
}
TY  - JOUR
AU  - A. E. Doronin
AU  - K. V. Kalgin
TI  - Application of SAT solvers to~the~problem of~finding vector Boolean functions with~required~cryptographic properties
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 38
EP  - 58
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a2/
LA  - ru
ID  - DA_2022_29_4_a2
ER  - 
%0 Journal Article
%A A. E. Doronin
%A K. V. Kalgin
%T Application of SAT solvers to~the~problem of~finding vector Boolean functions with~required~cryptographic properties
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 38-58
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_4_a2/
%G ru
%F DA_2022_29_4_a2
A. E. Doronin; K. V. Kalgin. Application of SAT solvers to~the~problem of~finding vector Boolean functions with~required~cryptographic properties. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 38-58. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a2/