On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an asymptotic formula for the number of labeled connected series-parallel $k$-cyclic graphs with given order and fixed number $k$. Under uniform probability distribution, we find the probability that a random labeled connected $n$-vertex $k$-cyclic graph with a fixed $k$ and $n\to\infty$ is a series-parallel graph. In addition, we determine the probability that, under uniform probability distribution, a random labeled connected series-parallel $n$-vertex $k$-cyclic graph with a fixed $k$ and $n\to\infty$ is a cactus. Bibliogr. 16.
Keywords: enumeration, labeled graph, block, series-parallel graph, $k$-cyclic graph, asymptotics, random graph.
@article{DA_2022_29_4_a0,
     author = {V. A. Voblyi},
     title = {On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a0/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 5
EP  - 14
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a0/
LA  - ru
ID  - DA_2022_29_4_a0
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 5-14
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_4_a0/
%G ru
%F DA_2022_29_4_a0
V. A. Voblyi. On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a0/

[1] F. Harary, Graph Theory, Addison-Wesley, London, 1969 | MR

[2] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28:8 (2007), 2091–2105 | DOI | MR

[3] McDiarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Comb., 58 (2016), 96–106 | DOI | MR

[4] Raghavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI | MR

[5] Takamizawa K., Nishizeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallel graphs”, J. ACM, 29:3 (1982), 623–641 | DOI | MR

[6] V. A. Voblyi, “Enumeration of labeled series-parallel tricyclic graphs”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 177, VINITI RAN, M., 2020, 132–136 (Russian)

[7] V. A. Voblyi, “Asymptotical enumeration of labeled series-parallel tetracyclic graphs”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 187, VINITI RAN, M., 2020, 31–35 (Russian)

[8] NIST handbook of mathematical functions, Camb. Univ. Press, New York, 2010, 951 pp.

[9] V. A. Voblyi, “Enumeration of labeled connected graphs with given order and size”, J. Appl. Ind. Math., 10:2 (2016), 302–310 | DOI | MR

[10] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley Sons, New York, 1983 | MR | MR

[11] J. Riordan, Combinatorial Identities, John Wiley Sons, New York, 1968 | MR | MR

[12] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | MR

[13] Wright E. M., “The number of connected sparsely edged graphs”, J. Graph Theory, 1:4 (1977), 317–330 | DOI | MR

[14] Wright E. M., “The number of connected sparsely edged graphs. II”, J. Graph Theory, 2:4 (1978), 299–305 | DOI | MR

[15] V. A. Voblyi, “Asymptotical enumeration of labeled series-parallel $k$-cyclic bridgeless graphs”, J. Appl. Ind. Math., 15:4 (2019) | DOI | MR

[16] Wright E. M., “The number of connected sparsely edged graphs. III”, J. Graph Theory, 4:4 (1980), 393–407 | DOI | MR