Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_3_a6, author = {S. M. Shperling and Yu. A. Kochetov}, title = {A knapsack problem for rectangles under the~gravity center constraints}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {102--115}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_3_a6/} }
TY - JOUR AU - S. M. Shperling AU - Yu. A. Kochetov TI - A knapsack problem for rectangles under the~gravity center constraints JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 102 EP - 115 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_3_a6/ LA - ru ID - DA_2022_29_3_a6 ER -
S. M. Shperling; Yu. A. Kochetov. A knapsack problem for rectangles under the~gravity center constraints. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 102-115. http://geodesic.mathdoc.fr/item/DA_2022_29_3_a6/
[1] Gallo G., Hammer P. L., Simeone B., “Quadratic knapsack problems”, Math. Program. Stud., 12 (1980), 132–149 | DOI | MR | Zbl
[2] Martello S., Toth P., Knapsack problems: Algorithms and computer implementations, John Wiley Sons, Chichester, 1990, 296 pp. | MR | Zbl
[3] Davies A. P., Bischoff E. E., “Weight distribution considerations in container loading”, Eur. J. Oper. Res., 114:3 (1999), 509–527 | DOI | Zbl
[4] Ratcliff M. S. W., Bischoff E. E., “Allowing for weight considerations in container loading”, OR Spectrum, 20:1 (1998), 65–71 | DOI | MR | Zbl
[5] Baldi M. M., Perboli G., Tadei R., “The three-dimensional knapsack problem with balancing constraints”, Appl. Math. Comput., 218 (2021), 9802–9818 | MR
[6] Kaluzny B. L., Shaw R. H. A. D., “Optimal aircraft load balancing”, Int. Trans. Oper. Res., 16:6 (2009), 767–787 | DOI | Zbl
[7] Mongeau M., Bès C., “Optimization of aircraft container loading”, IEEE Trans. Aerosp. Electron. Syst., 39:1 (2003), 140–150 | DOI
[8] Trivella A., Pisinger D., “The load-balanced multi-dimensional bin-packing problem”, Comput. Oper. Res., 74 (2016), 152–164 | DOI | MR | Zbl
[9] Fernández A., Gil C., Baños R., Montoya M. G., “A parallel multi-objective algorithm for two-dimensional bin packing with rotations and load balancing”, Expert Syst. Appl., 40:13 (2013), 5169–5180 | DOI
[10] Liu D. S., Tan K. C., Huang S. Y., Goh C. K., Ho W. K., “On solving multiobjective bin packing problems using evolutionary particle swarm optimization”, Eur. J. Oper. Res., 190:2 (2008), 357–382 | DOI | MR | Zbl
[11] Kirkpatrick S., Gelatt C. D., Jr., Vecchi M. P., “Optimization by simulated annealing”, Science, 220:4598 (1983), 671–680 | DOI | MR | Zbl
[12] Dowsland K. A., “Some experiments with simulated annealing techniques for packing problems”, Eur. J. Oper. Res., 68:3 (1993), 389–399 | DOI | Zbl
[13] Vasilyev I., Ushakov A. V., Barkova M. V., Zhang D., Ren J., Chen J., “Fast heuristic algorithms for the multiple strip packing problems”, Mathematical Optimization Theory and Operations Research, Recent Trends. Rev. Sel. Pap. 20th Int. Conf. (Irkutsk, Russia, July 5–10 2021), Commun. Comput. Inf. Sci., 1476, Springer, Cham, 2021, 285–297 | MR
[14] Gurobi optimizer reference manual, Gurobi Optimization, Beaverton, 2021 (accessed May 16, 2022) www.gurobi.com/documentation/9.5/refman/index.html