Modeling and optimizing large-scale production-level transportation systems
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 64-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Large-scale economic modeling is becoming a reality for major businesses and it pushes their analytic and planning departments into very complicated areas of big data analytics and control. At the same time, it demands research communities in academia and else to develop adequate tools to operate models with millions of variables and gigabytes of data, where traditional off-the-shelf solutions fail. In this paper, we describe our experience with one rather common high-dimensional logistic problem and some of the mathematical and computational ideas we pursue to deal with it. Tab. 3, bibliogr. 21.
Keywords: large-scale economic modeling, production-level transport expedition system, linear optimization, projection algorithm.
@article{DA_2022_29_3_a4,
     author = {E. A. Nurminskiy and N. B. Shamray},
     title = {Modeling and optimizing large-scale production-level transportation systems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {64--84},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_3_a4/}
}
TY  - JOUR
AU  - E. A. Nurminskiy
AU  - N. B. Shamray
TI  - Modeling and optimizing large-scale production-level transportation systems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 64
EP  - 84
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_3_a4/
LA  - ru
ID  - DA_2022_29_3_a4
ER  - 
%0 Journal Article
%A E. A. Nurminskiy
%A N. B. Shamray
%T Modeling and optimizing large-scale production-level transportation systems
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 64-84
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_3_a4/
%G ru
%F DA_2022_29_3_a4
E. A. Nurminskiy; N. B. Shamray. Modeling and optimizing large-scale production-level transportation systems. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 64-84. http://geodesic.mathdoc.fr/item/DA_2022_29_3_a4/

[1] Gurobi optimizer reference manual, Gurobi Optimization, Beaverton, 2021 (accessed Feb. 27, 2022) www.gurobi.com/documentation/9.5/refman/index.html

[2] IBM ILOG CPLEX Optimizer, IBM, Armonk, 2022 (accessed Feb. 27, 2022) www.ibm.com/analytics/cplex-optimizer

[3] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D., LAPACK users' guide, SIAM, Philadelphia, 1999, 404 pp. | MR

[4] SuiteSparse: A suite of sparse matrix software, Texas A Univ, College Station, 2022 (accessed Feb. 27, 2022) people.engr.tamu.edu/davis/suitesparse.html | MR

[5] Dantzig G. B., Wolfe Ph., “The decomposition algorithm for linear programming”, Econometrica, 9:4 (1961), 767–778 | DOI | MR

[6] AMPL homepage, , AMPL Optimization, Mountain View, CA (accessed Feb. 27, 2022) ampl.com

[7] Fourer R., Gay D. M., Kernighan B. W., AMPL: A modeling language for mathematical programming, Cengage Learning, Boston, 2003, 517 pp.

[8] GAMS — A user's guide, GAMS Software, Frechen, 2022 (accessed Feb. 27, 2022) www.gams.com/35/docs/UG_MAIN.html

[9] GLPK (GNU linear programming kit), Free Software Found., Boston, MA, 2012 (accessed Feb. 27, 2022) www.gnu.org/software/glpk/

[10] NEOS Server, Univ. Wisconsin, Madison, WI, 2022 (accessed Feb. 27, 2022) neos-server.org/neos/

[11] Kahan G., “Walking through a columnar approach to linear programming of a business”, Interfaces, 12:3 (1982), 32–39 | DOI

[12] Nurminski E. A., “Single-projection procedure for linear optimization”, J. Glob. Optim., 66:1 (2016), 95–110 | DOI | MR | Zbl

[13] Goldman A. J., Tucker A. W., “Theory of linear programming”, Linear inequalities and related systems, Annals of Mathematics Studies, 38, Princeton Univ. Press, Princeton, NJ, 1956, 53–97 | MR

[14] Von Neumann J., “On rings of operators. Reduction theory”, Ann. Math., 50:2 (1949), 401–485 | DOI | MR | Zbl

[15] Bauschke H. H., Borwein J. M., “On the convergence of von Neumann's alternating projection algorithm for two sets”, Set-Valued Anal., 1993, no. 1, 185–212 | DOI | MR | Zbl

[16] Escalante R., Raydan M., Alternating projection methods, SIAM, Philadelphia, 2011 | MR | Zbl

[17] C. Michelot, “A finite algorithm for finding the projection of a point onto the canonical simplex of $E^n$”, J. Optim. Theory Appl., 50:1 (1986), 195–200 | DOI | MR | Zbl

[18] V. N. Malozemov and G. Sh. Tamasyan, “Two fast algorithms for projecting a point onto the canonical simplex”, Comput. Math. Math. Phys., 56:5 (2016), 730–743 | DOI | MR | Zbl

[19] E. A. Nurminski, “Projection onto polyhedra in outer representation”, Comput. Math. Math. Phys., 48:3 (2008), 367–375 | DOI | MR | Zbl

[20] Nurminski E. A., Shamray N. B., “Row-oriented decomposition in large-scale linear optimization”, Optimization and Applications, Proc. Int. Conf. OPTIMA 2021 (Petrovac, Montenegro, Sep. 27–Oct. 1, 2021), Lect. Notes Comput. Sci., 13078, Springer, Heidelberg, 2021, 50–63 | DOI | MR

[21] Greenberg H. J., Lundgren J. R., Maybee J. S., “Graph theoretic methods for the qualitative analysis of rectangular matrices”, SIAM J. Algebraic Discrete Methods, 2:3 (1981), 227–239 | DOI | MR | Zbl