Optimization of subgradient method parameters on the base of rank-two correction of~metric~matrices
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 24-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a relaxation subgradient method (RSM) that includes parameter optimization utilizing metric rank-two correction matrices with a structure analogous to quasi-Newtonian (QN) methods. The metric matrix transformation consists of suppressing orthogonal and amplifying collinear components of the minimal length subgradient vector. The problem of constructing a metric matrix is formulated as a problem of solving an involved system of inequalities. Solving such system is based on a new learning algorithm. An estimate for its convergence rate is obtained depending on the parameters of the subgradient set. A new RSM has been developed and investigated on this basis. Computational experiments on complex large-scale functions confirm the effectiveness of the proposed algorithm. Tab. 4, bibliogr. 32.
Keywords: convex optimization, nonsmooth optimization, relaxation subgradient method.
@article{DA_2022_29_3_a2,
     author = {V. N. Krutikov and P. S. Stanimirovi\'c and O. N. Indenko and E. M. Tovbis and L. A. Kazakovtsev},
     title = {Optimization of subgradient method parameters on the base of rank-two correction of~metric~matrices},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {24--44},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_3_a2/}
}
TY  - JOUR
AU  - V. N. Krutikov
AU  - P. S. Stanimirović
AU  - O. N. Indenko
AU  - E. M. Tovbis
AU  - L. A. Kazakovtsev
TI  - Optimization of subgradient method parameters on the base of rank-two correction of~metric~matrices
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 24
EP  - 44
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_3_a2/
LA  - ru
ID  - DA_2022_29_3_a2
ER  - 
%0 Journal Article
%A V. N. Krutikov
%A P. S. Stanimirović
%A O. N. Indenko
%A E. M. Tovbis
%A L. A. Kazakovtsev
%T Optimization of subgradient method parameters on the base of rank-two correction of~metric~matrices
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 24-44
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_3_a2/
%G ru
%F DA_2022_29_3_a2
V. N. Krutikov; P. S. Stanimirović; O. N. Indenko; E. M. Tovbis; L. A. Kazakovtsev. Optimization of subgradient method parameters on the base of rank-two correction of~metric~matrices. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 24-44. http://geodesic.mathdoc.fr/item/DA_2022_29_3_a2/