Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_2_a3, author = {S. A. Novoselov and Yu. F. Boltnev}, title = {On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {62--79}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a3/} }
TY - JOUR AU - S. A. Novoselov AU - Yu. F. Boltnev TI - On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 62 EP - 79 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_2_a3/ LA - ru ID - DA_2022_29_2_a3 ER -
%0 Journal Article %A S. A. Novoselov %A Yu. F. Boltnev %T On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field %J Diskretnyj analiz i issledovanie operacij %D 2022 %P 62-79 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2022_29_2_a3/ %G ru %F DA_2022_29_2_a3
S. A. Novoselov; Yu. F. Boltnev. On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 62-79. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a3/