Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_2_a2, author = {D. S. Malyshev and O. I. Duginov}, title = {Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {38--61}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/} }
TY - JOUR AU - D. S. Malyshev AU - O. I. Duginov TI - Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 38 EP - 61 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/ LA - ru ID - DA_2022_29_2_a2 ER -
%0 Journal Article %A D. S. Malyshev %A O. I. Duginov %T Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests %J Diskretnyj analiz i issledovanie operacij %D 2022 %P 38-61 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/ %G ru %F DA_2022_29_2_a2
D. S. Malyshev; O. I. Duginov. Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 38-61. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/
[1] Holyer I., “The NP-completeness of edge-coloring”, SIAM J. Comput., 10:4 (1981), 718–720 | DOI | MR | Zbl
[2] V. G. Vizing, “On an estimate of the chromatic index of a $p$-graph”, Discrete Analysis, 3, Inst. Mat. SO AN, Novosibirsk, 1964, 25–30 (Russian)
[3] Galby E., Lima P. T., Paulusma D., Ries B., “Classifying $k$-edge colouring for $H$-free graphs”, Inf. Process. Lett., 146 (2019), 39–43 | DOI | MR | Zbl
[4] D. S. Malyshev, “The complexity of the edge $3$-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. Elektron. Mat. Izv., 11 (2014), 811–822 | MR | Zbl
[5] D. S. Malyshev, “Complexity classification of the edge coloring problem for a family of graph classes”, Diskretn. Mat., 27:2 (2017), 97–101 | MR | Zbl
[6] D. S. Malyshev, “Complete complexity dichotomy for $7$-edge forbidden subgraphs in the edge coloring problem”, Diskretn. Anal. Issled. Oper., 14:4 (2020), 706–721 | MR
[7] Kamiński M., Lozin V. V., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. Discrete Math., 2:1 (2007), 61–66 | MR | Zbl
[8] Schrijver A., Combinatorial optimization. Polyhedra and efficiency, Springer, Heidelberg, 2003, 1879 pp. | MR | Zbl
[9] Courcelle B., Makowsky J. A., Rotics U., “Linear time solvable optimization problems on graphs of bounded clique-width”, Theory Comput. Syst., 33:2 (2000), 125–150 | DOI | MR | Zbl
[10] Gurski F., Wanke E., “Line graphs of bounded clique-width”, Discrete Math., 307:22 (2007), 2734–2754 | DOI | MR | Zbl
[11] Kobler D., Rotics U., “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Appl. Math., 126:2–3 (2003), 197–223 | DOI | MR
[12] Boliac R., Lozin V. V., “On the clique-width of graphs in hereditary classes”, Algorithms and Computation, Proc. 13th Int. Symp. (Vancouver, Canada, Nov. 21–23, 2002), Lect. Notes Comput. Sci., 2518, Springer, Heidelberg, 2002, 44–54 | DOI | MR | Zbl
[13] Corneil D. G., Rotics U., “On the relationship between clique-width and treewidth”, SIAM J. Comput., 34:4 (2005), 825–847 | DOI | MR | Zbl
[14] Gurski F., Wanke E., “The tree-width of clique-width bounded graphs without $K_{n,n}$”, Graph-Theoretic Concepts in Computer Science, Proc. 26th Int. Workshop (Konstanz, Germany, June 15–17, 2000), Lect. Notes Comput. Sci., 1928, Springer, Heidelberg, 2000, 196–205 | DOI | MR | Zbl