Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 38-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The edge-coloring problem, is to minimize the number of colors sufficient to color all the edges of a given graph so that any adjacent edges receive distinct colors. For all the classes defined by sets of forbidden subgraphs with 7 edges each, the complexity status of this problem is known. In this paper, we consider the case of prohibitions with 8 edges. It is not hard to see that the edge-coloring problem is NP-complete for such a class if there are no subcubic forests among its 8-edge prohibitions. We prove that forbidding any subcubic 8-edge forest generates a class with polynomial-time solvability of the edge-coloring problem, except for the cases formed by the disjunctive sum of one of 4 forests and an empty graph. For all the remaining four cases, we prove a similar result for the intersection with the set of graphs of maximum degree at least four. Illustr. 2, bibliogr. 14.
Mots-clés : monotone class
Keywords: edge-coloring problem, computational complexity.
@article{DA_2022_29_2_a2,
     author = {D. S. Malyshev and O. I. Duginov},
     title = {Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {38--61},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/}
}
TY  - JOUR
AU  - D. S. Malyshev
AU  - O. I. Duginov
TI  - Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 38
EP  - 61
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/
LA  - ru
ID  - DA_2022_29_2_a2
ER  - 
%0 Journal Article
%A D. S. Malyshev
%A O. I. Duginov
%T Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 38-61
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/
%G ru
%F DA_2022_29_2_a2
D. S. Malyshev; O. I. Duginov. Some cases of polynomial solvability for~the~edge~colorability problem generated by~forbidden $8$-edge subcubic forests. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 38-61. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a2/

[1] Holyer I., “The NP-completeness of edge-coloring”, SIAM J. Comput., 10:4 (1981), 718–720 | DOI | MR | Zbl

[2] V. G. Vizing, “On an estimate of the chromatic index of a $p$-graph”, Discrete Analysis, 3, Inst. Mat. SO AN, Novosibirsk, 1964, 25–30 (Russian)

[3] Galby E., Lima P. T., Paulusma D., Ries B., “Classifying $k$-edge colouring for $H$-free graphs”, Inf. Process. Lett., 146 (2019), 39–43 | DOI | MR | Zbl

[4] D. S. Malyshev, “The complexity of the edge $3$-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. Elektron. Mat. Izv., 11 (2014), 811–822 | MR | Zbl

[5] D. S. Malyshev, “Complexity classification of the edge coloring problem for a family of graph classes”, Diskretn. Mat., 27:2 (2017), 97–101 | MR | Zbl

[6] D. S. Malyshev, “Complete complexity dichotomy for $7$-edge forbidden subgraphs in the edge coloring problem”, Diskretn. Anal. Issled. Oper., 14:4 (2020), 706–721 | MR

[7] Kamiński M., Lozin V. V., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. Discrete Math., 2:1 (2007), 61–66 | MR | Zbl

[8] Schrijver A., Combinatorial optimization. Polyhedra and efficiency, Springer, Heidelberg, 2003, 1879 pp. | MR | Zbl

[9] Courcelle B., Makowsky J. A., Rotics U., “Linear time solvable optimization problems on graphs of bounded clique-width”, Theory Comput. Syst., 33:2 (2000), 125–150 | DOI | MR | Zbl

[10] Gurski F., Wanke E., “Line graphs of bounded clique-width”, Discrete Math., 307:22 (2007), 2734–2754 | DOI | MR | Zbl

[11] Kobler D., Rotics U., “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Appl. Math., 126:2–3 (2003), 197–223 | DOI | MR

[12] Boliac R., Lozin V. V., “On the clique-width of graphs in hereditary classes”, Algorithms and Computation, Proc. 13th Int. Symp. (Vancouver, Canada, Nov. 21–23, 2002), Lect. Notes Comput. Sci., 2518, Springer, Heidelberg, 2002, 44–54 | DOI | MR | Zbl

[13] Corneil D. G., Rotics U., “On the relationship between clique-width and treewidth”, SIAM J. Comput., 34:4 (2005), 825–847 | DOI | MR | Zbl

[14] Gurski F., Wanke E., “The tree-width of clique-width bounded graphs without $K_{n,n}$”, Graph-Theoretic Concepts in Computer Science, Proc. 26th Int. Workshop (Konstanz, Germany, June 15–17, 2000), Lect. Notes Comput. Sci., 1928, Springer, Heidelberg, 2000, 196–205 | DOI | MR | Zbl