On the Frobenius problem
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 24-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Frobenius problem (the Frobenius coin problem) is considered. Using the method of generating functions, a formula is found for the number of solutions of the Diophantine equation associated with this problem. Special attention is paid to the case of two variables, which is considered to be investigated, but there are no rigorous proofs in some of its aspects. As a consequence of the result obtained in this work, both the well-known Sylvester theorem (expressions for the Frobenius number) and formulas for those values of variables on which this number is achieved follow. The problems of this work are closely related to algorithms for solving discrete optimization problems, as well as cryptographic methods in information security. Tab. 1, bibliogr. 25.
Mots-clés : Diophantine equation, coefficient method.
Keywords: Frobenius problem, Sylvester's theorem, generating function
@article{DA_2022_29_2_a1,
     author = {V. K. Leontiev},
     title = {On the {Frobenius} problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/}
}
TY  - JOUR
AU  - V. K. Leontiev
TI  - On the Frobenius problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 24
EP  - 37
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/
LA  - ru
ID  - DA_2022_29_2_a1
ER  - 
%0 Journal Article
%A V. K. Leontiev
%T On the Frobenius problem
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 24-37
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/
%G ru
%F DA_2022_29_2_a1
V. K. Leontiev. On the Frobenius problem. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 24-37. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/