On the Frobenius problem
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Frobenius problem (the Frobenius coin problem) is considered. Using the method of generating functions, a formula is found for the number of solutions of the Diophantine equation associated with this problem. Special attention is paid to the case of two variables, which is considered to be investigated, but there are no rigorous proofs in some of its aspects. As a consequence of the result obtained in this work, both the well-known Sylvester theorem (expressions for the Frobenius number) and formulas for those values of variables on which this number is achieved follow. The problems of this work are closely related to algorithms for solving discrete optimization problems, as well as cryptographic methods in information security. Tab. 1, bibliogr. 25.
Mots-clés : Diophantine equation, coefficient method.
Keywords: Frobenius problem, Sylvester's theorem, generating function
@article{DA_2022_29_2_a1,
     author = {V. K. Leontiev},
     title = {On the {Frobenius} problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/}
}
TY  - JOUR
AU  - V. K. Leontiev
TI  - On the Frobenius problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 24
EP  - 37
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/
LA  - ru
ID  - DA_2022_29_2_a1
ER  - 
%0 Journal Article
%A V. K. Leontiev
%T On the Frobenius problem
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 24-37
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/
%G ru
%F DA_2022_29_2_a1
V. K. Leontiev. On the Frobenius problem. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 24-37. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/

[1] Sylvester J. J., “Problem 7382”, Educ. Times, J. Coll. Precept., 36:266 (1883), 177 | MR

[2] Curran Sharp W. J., “Problem 7382. Solution”, Educ. Times, J. Coll. Precept., 36:271 (1883), 315

[3] Sylvester J. J., “Problem 7382”, Mathematical questions with their solutions: From the “Educational Times”, 41, C. F. Hodgson, London, 1884, 21

[4] V. I. Arnol'd, Experimental Observations of Mathematical Facts, MTsNMO, M., 2006 (Russian)

[5] V. M. Fomichev, D. A. Mel'nikov, Cryptographic Methods of Information Security, Yurayt, M., 2017 (Russian)

[6] Erdös P., Graham R. L., “On a linear Diophantine problem of Frobenius”, Acta Arithmetica, 21 (1972), 399–408 | DOI | MR | Zbl

[7] Alfonsín J. R., The Diophantine Frobenius problem, Oxford Univ. Press, London, 2005 | MR | Zbl

[8] Arnold V. I., “Arithmetical turbulence of selfsimilar fluctuations statistics of large Frobenius numbers of additive semigroups of integer”, Moscow Math. J., 7:2 (2007), 173–193 | DOI | MR | Zbl

[9] V. I. Arnol'd, “Weak asymptotics for the numbers of solutions of Diophantine problems”, Funct. Anal. Appl., 33:4 (1999), 292–293 | DOI | MR | Zbl

[10] V. M. Fomichev, “Estimates for exponent of some graphs by Frobenius's numbers of three arguments”, Prikl. Diskretn. Mat., 2014, no. 2, 88–96 (Russian) | Zbl

[11] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | DOI | MR | Zbl

[12] Tripathi A., “Formulae for the Frobenius number in three variables”, J. Number Theory, 170 (2017), 368–389 | DOI | MR | Zbl

[13] V. P. Savelyev, V. N. Shevchenko, “The Frobenius problem for three numbers”, Proc. Int. Scientific Practice Conf., EFIR, M., 2019, 10–15 (Russian)

[14] Song K., “The Frobenius problem for numerical semigroups generated by the Thabit numbers of the first, second kind base $b$ and the Cunningham numbers”, Bull. Korean Math. Soc., 57:3 (2020), 623–647 | MR | Zbl

[15] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for Thabit numerical semigroups”, J. Number Theory, 155 (2015), 85–99 | DOI | MR | Zbl

[16] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for repunit numerical semigroups”, Ramanujan J., 40 (2016), 323–334 | DOI | MR | Zbl

[17] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for Mersenne numerical semigroups”, Math. Z., 286 (2017), 741–749 | DOI | MR | Zbl

[18] Nijenhuis M., “A minimal-path algorithm for the “money changing problem””, Amer. Math. Mon., 86 (1979), 832–835 | MR | Zbl

[19] V. M. Fomichev, “Primitive sets of numbers equivalent by Frobenius”, Prikl. Diskretn. Mat., 2014, no. 1, 20–26 (Russian) | Zbl

[20] G. P. Egorychev, Integral Representation and Computing of Combinatorial Sums, Nauka, Novosibirsk, 1977 (Russian)

[21] V. K. Leontyev, Eh. N. Gordeev, “Generating functions in the Knapsack problem”, Dokl. Math., 98:1 (2018), 364–366 | DOI | MR | Zbl

[22] Eh. N. Gordeev, V. K. Leontyev, “On combinatorial properties of the Knapsack problem”, Comput. Math. Math. Phys., 59:8 (2019), 1380–1388 | DOI | MR | Zbl

[23] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley Sons, New York, 1958 | MR | Zbl

[24] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable, Nauka, M., 1989 (Russian) | MR

[25] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, AMS, Providence, RI, 1999 | MR