Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_2_a1, author = {V. K. Leontiev}, title = {On the {Frobenius} problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {24--37}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/} }
V. K. Leontiev. On the Frobenius problem. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 2, pp. 24-37. http://geodesic.mathdoc.fr/item/DA_2022_29_2_a1/
[1] Sylvester J. J., “Problem 7382”, Educ. Times, J. Coll. Precept., 36:266 (1883), 177 | MR
[2] Curran Sharp W. J., “Problem 7382. Solution”, Educ. Times, J. Coll. Precept., 36:271 (1883), 315
[3] Sylvester J. J., “Problem 7382”, Mathematical questions with their solutions: From the “Educational Times”, 41, C. F. Hodgson, London, 1884, 21
[4] V. I. Arnol'd, Experimental Observations of Mathematical Facts, MTsNMO, M., 2006 (Russian)
[5] V. M. Fomichev, D. A. Mel'nikov, Cryptographic Methods of Information Security, Yurayt, M., 2017 (Russian)
[6] Erdös P., Graham R. L., “On a linear Diophantine problem of Frobenius”, Acta Arithmetica, 21 (1972), 399–408 | DOI | MR | Zbl
[7] Alfonsín J. R., The Diophantine Frobenius problem, Oxford Univ. Press, London, 2005 | MR | Zbl
[8] Arnold V. I., “Arithmetical turbulence of selfsimilar fluctuations statistics of large Frobenius numbers of additive semigroups of integer”, Moscow Math. J., 7:2 (2007), 173–193 | DOI | MR | Zbl
[9] V. I. Arnol'd, “Weak asymptotics for the numbers of solutions of Diophantine problems”, Funct. Anal. Appl., 33:4 (1999), 292–293 | DOI | MR | Zbl
[10] V. M. Fomichev, “Estimates for exponent of some graphs by Frobenius's numbers of three arguments”, Prikl. Diskretn. Mat., 2014, no. 2, 88–96 (Russian) | Zbl
[11] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | DOI | MR | Zbl
[12] Tripathi A., “Formulae for the Frobenius number in three variables”, J. Number Theory, 170 (2017), 368–389 | DOI | MR | Zbl
[13] V. P. Savelyev, V. N. Shevchenko, “The Frobenius problem for three numbers”, Proc. Int. Scientific Practice Conf., EFIR, M., 2019, 10–15 (Russian)
[14] Song K., “The Frobenius problem for numerical semigroups generated by the Thabit numbers of the first, second kind base $b$ and the Cunningham numbers”, Bull. Korean Math. Soc., 57:3 (2020), 623–647 | MR | Zbl
[15] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for Thabit numerical semigroups”, J. Number Theory, 155 (2015), 85–99 | DOI | MR | Zbl
[16] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for repunit numerical semigroups”, Ramanujan J., 40 (2016), 323–334 | DOI | MR | Zbl
[17] Rosales J. C., Branco M. B., Torrão D., “The Frobenius problem for Mersenne numerical semigroups”, Math. Z., 286 (2017), 741–749 | DOI | MR | Zbl
[18] Nijenhuis M., “A minimal-path algorithm for the “money changing problem””, Amer. Math. Mon., 86 (1979), 832–835 | MR | Zbl
[19] V. M. Fomichev, “Primitive sets of numbers equivalent by Frobenius”, Prikl. Diskretn. Mat., 2014, no. 1, 20–26 (Russian) | Zbl
[20] G. P. Egorychev, Integral Representation and Computing of Combinatorial Sums, Nauka, Novosibirsk, 1977 (Russian)
[21] V. K. Leontyev, Eh. N. Gordeev, “Generating functions in the Knapsack problem”, Dokl. Math., 98:1 (2018), 364–366 | DOI | MR | Zbl
[22] Eh. N. Gordeev, V. K. Leontyev, “On combinatorial properties of the Knapsack problem”, Comput. Math. Math. Phys., 59:8 (2019), 1380–1388 | DOI | MR | Zbl
[23] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley Sons, New York, 1958 | MR | Zbl
[24] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable, Nauka, M., 1989 (Russian) | MR
[25] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, AMS, Providence, RI, 1999 | MR