Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_1_a5, author = {I. P. Chukhrov}, title = {Properties of {Boolean} functions with the~extremal number of prime implicants}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {74--93}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_1_a5/} }
TY - JOUR AU - I. P. Chukhrov TI - Properties of Boolean functions with the~extremal number of prime implicants JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 74 EP - 93 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_1_a5/ LA - ru ID - DA_2022_29_1_a5 ER -
I. P. Chukhrov. Properties of Boolean functions with the~extremal number of prime implicants. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 1, pp. 74-93. http://geodesic.mathdoc.fr/item/DA_2022_29_1_a5/
[1] Yu. L. Vasil'ev, V. V. Glagolev, “Metric properties of disjunctive normal forms”, Discrete Mathematics and Mathematical Problems of Cybernetics, Nauka, M., 1974, 99–148 (Russian)
[2] A. A. Sapozhenko, I. P. Chukhrov, “Boolean function minimization in the class of disjunctive normal forms”, J. Sov. Math., 46:4 (1989), 2021–2052
[3] A. P. Vikulin, “Estimation of the number of conjunctions in the complete DNF”, Problems of Cybernetics, 29, Nauka, M., 1974, 151–166 (Russian)
[4] Chandra A. K., Markovsky G., “On the number of prime implicants”, Discrete Math., 24 (1978), 7–11
[5] I. P. Chukhrov, “Connected boolean functions with a locally extremal number of prime implicants”, J. Appl. Ind. Math., 15:1 (2021), 17–38
[6] G. P. Gavrilov, A. A. Sapozhenko, Tasks and Exercises in Discrete Mathematics, Fizmatlit, M., 2005 (Russian)
[7] A. A. Borovkov, Probability Theory, Editorial URSS, M., 1999 (Russian)
[8] I. P. Chukhrov, “About the maximum cardinality of the shadow of an antichain”, Diskretn. Mat., 1:4 (1989), 78–85 (Russian)
[9] N. Alon, J. H. Spencer, The Probabilistic Method, Wiley, Hoboken, NJ, 2000
[10] A. V. Kostochka, “An upper bound of the cardinality of antichain boundary in the $n$-cube”, Discrete Math. Appl., 1:3 (1991), 279–288