@article{DA_2022_29_1_a4,
author = {S. N. Selezneva},
title = {On complexity of searching for periods of~functions given by polynomials over~a~prime~field},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {56--73},
year = {2022},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2022_29_1_a4/}
}
TY - JOUR AU - S. N. Selezneva TI - On complexity of searching for periods of functions given by polynomials over a prime field JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 56 EP - 73 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/DA_2022_29_1_a4/ LA - ru ID - DA_2022_29_1_a4 ER -
S. N. Selezneva. On complexity of searching for periods of functions given by polynomials over a prime field. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 1, pp. 56-73. http://geodesic.mathdoc.fr/item/DA_2022_29_1_a4/
[1] O. A. Logachyov, A. A. Sal'nikov, S. V. Smyshlyaev, V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology, MTsNMO, M., 2012 (Russian)
[2] Dawson E., Wu C.-K., “On the linear structure of symmetric Boolean functions”, Australas. J. Comb., 16 (1997), 239–243
[3] V. K. Leont'ev, “Certain problems associated with Boolean polynomials”, Comput. Math. Math. Phys., 39:6 (1999), 1006–1015
[4] S. N. Selezneva, “On the complexity of completeness recognition of systems of Boolean functions realized in the form of Zhegalkin polynomials”, Discrete Math. Appl., 7:6 (1997), 565–572
[5] S. N. Selezneva, “A polynomial algorithm for the recognition of belonging a function of $k$-valued logic realized by a polynomial to precomplete classes of self-dual functions”, Discrete Math. Appl., 8:5 (1998), 483–492
[6] Grigoriev D. Yu., “Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines”, Theor. Comput. Sci., 180:1–2 (1997), 217–228
[7] D. Yu. Grigoriev, “Testing the shift-equivalence of polynomials using quantum machines”, J. Math. Sci., 82:1 (1996), 3184–3193
[8] S. N. Selezneva, “On searching periods of Zhegalkin polynomials”, Diskretn. Mat., 33:3 (2021), 107–120 (Russian)
[9] R. Lidl, H. Niederreiter, Finite Fields, Camb. Univ. Press, Cambridge, 1985
[10] S. V. Yablonskii, Introduction to Discrete Mathematics, Vysshaya Shkola, M., 2001 (Russian)
[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979