Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_4_a4, author = {A. G. Klyuchikov and M. N. Vyalyi}, title = {A win-win algorithm for~the~$(k+1)${-LST/}$k$-pathwidth~problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {117--124}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_4_a4/} }
TY - JOUR AU - A. G. Klyuchikov AU - M. N. Vyalyi TI - A win-win algorithm for~the~$(k+1)$-LST/$k$-pathwidth~problem JO - Diskretnyj analiz i issledovanie operacij PY - 2021 SP - 117 EP - 124 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2021_28_4_a4/ LA - ru ID - DA_2021_28_4_a4 ER -
A. G. Klyuchikov; M. N. Vyalyi. A win-win algorithm for~the~$(k+1)$-LST/$k$-pathwidth~problem. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 4, pp. 117-124. http://geodesic.mathdoc.fr/item/DA_2021_28_4_a4/
[1] Bienstock D., Robertson N., Seymour P. D., Thomas R., “Quickly excluding a forest”, J. Comb. Theory, Ser. B, 52 (1991), 274–283 | DOI | Zbl
[2] Douglas R. J., “NP-completeness and degree restricted spanning trees”, Discrete Math., 105:1-3 (1992), 41–47 | DOI | Zbl
[3] Kashiwabara T., Fujisawa T., “NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph”, Proc. Int. Symp. Circuits and Systems (Tokyo, Japan, July 17–19, 1979), IEEE, New York, 1979, 657–660
[4] Bodlaender H. L., Demaine E. D., Fellows M. R. et al., Open problems in parameterized and exact computation — IWPEC 2008, Technical Report UU-CS-2008-017, Utrecht Univ., Utrecht, 2008 (accessed Aug. 3, 2021) http://www.cs.uu.nl/research/techreps/repo/CS-2008/2008-017.pdf
[5] Diestel R., “Graph minors I: A short proof of the path-width theorem”, Comb. Prob. Comput., 4:1 (1995), 27–30 | DOI | Zbl