The reduction of the Pareto set of a special structure in bicriteria discrete problems
Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 4, pp. 90-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate bicriteria discrete optimization problems in the context of the axiomatic approach of the Pareto set reduction. The degree of the reduction with respect to values of the coefficient of compromise is evaluated for special structures and general case of the Pareto set. The results are applied to the set covering problem and vehicle routing problems. Illustr. 4, bibliogr. 19.
Keywords: discrete optimization, bicriteria problem, the Pareto set reduction, preference relation of the decision maker.
@article{DA_2021_28_4_a3,
     author = {A. O. Zakharov and Yu. V. Kovalenko},
     title = {The reduction of the {Pareto} set of a special structure in bicriteria discrete problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {90--116},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2021_28_4_a3/}
}
TY  - JOUR
AU  - A. O. Zakharov
AU  - Yu. V. Kovalenko
TI  - The reduction of the Pareto set of a special structure in bicriteria discrete problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2021
SP  - 90
EP  - 116
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2021_28_4_a3/
LA  - ru
ID  - DA_2021_28_4_a3
ER  - 
%0 Journal Article
%A A. O. Zakharov
%A Yu. V. Kovalenko
%T The reduction of the Pareto set of a special structure in bicriteria discrete problems
%J Diskretnyj analiz i issledovanie operacij
%D 2021
%P 90-116
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2021_28_4_a3/
%G ru
%F DA_2021_28_4_a3
A. O. Zakharov; Yu. V. Kovalenko. The reduction of the Pareto set of a special structure in bicriteria discrete problems. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 4, pp. 90-116. http://geodesic.mathdoc.fr/item/DA_2021_28_4_a3/

[1] O. I. Larichev, Decision-Making Theory and Methods, as well as a Chronicle of Events in Magical Lands, Logos, M., 2006 (Russian)

[2] A. V. Lotov, I. I. Pospelova, Multi-Criteria Decision Making Problems, MAKS Press, M., 2008 (Russian)

[3] A. B. Petrovsky, Decision Making Theory, Akademiya, M., 2009 (Russian)

[4] Ishizaka A., Nemery P., Multi-criteria decision analysis: Methods and software, Wiley, Hoboken, NJ, 2013, 328 pp.

[5] Ehrgott M., Figueira J. L., Greco S., Trends in multiple criteria decision analysis, Springer, New York, 2010, 412 pp. | Zbl

[6] Greco S., Ehrgott M., Figueira J. L., Multiple criteria decision analysis: State of the art surveys, Springer, New York, 2016, 1347 pp. | Zbl

[7] O. I. Larichev, Verbal Analysis of Solutions, Nauka, M., 2006 (Russian)

[8] V. D. Nogin, Pareto Set Reduction: An Axiomatic Approach, FIZMATLIT, M., 2016 (Russian)

[9] Zakharov A. O., Kovalenko Yu. V., “Reduction of the Pareto set in bicriteria Asymmetric Traveling Salesman Problem”, Optimization Problems and Their Applications, Rev. Sel. Pap. 7th Int. Conf. (Omsk, Russia, July 8–14, 2018), Commun. Comput. Inf. Sci., 871, Springer, Cham, 2018, 93–105

[10] A. O. Zakharov, Yu. V. Kovalenko, “Construction and reduction of the Pareto set in Asymmetric Travelling Salesman Problem with two criteria”, Vestn. S. Petersburg Univ., Appl. Math. Comput. Sci. Control Processes, 14:4 (2018), 378–392

[11] Zakharov A. O., Kovalenko Yu. V., “Structures of the Pareto set and their reduction in bicriteria discrete problems”, J. Phys. Conf. Ser., 1260:8 (2019), 082007, 8 pp. | DOI

[12] Christofides N., Graph theory: An algorithmic approach, Acad. Press, London, 1975, 400 pp. | Zbl

[13] A. V. Eremeev, L. A. Zaozerskaya, A. A. Kolokolov, “A set covering problem: Complexity, algoritms, experimental research”, Diskretn. Anal. Issled. Oper., Ser. 2, 7:2 (2000), 22–46 (Russian) | Zbl

[14] M. I. Nechepurenko, V. K. Popkov, S. M. Majnagashev, S. B. Kaul', V. A. Proskuryakov, V. A. Kohov, A. B. Gryzunov, Algorithms and Programs for Solving Problems on Graphs and Networks, Nauka, Novosibirsk, 1990 (Russian)

[15] Kolokolov A. A., Zaozerskaya L. A., “Solving a bicriteria problem of optimal service centers location”, J. Math. Model. Algorithms, 12 (2013), 105–116 | DOI | Zbl

[16] Saksena J., “Mathematical model for scheduling clients through welfare agencies”, J. Can. Oper. Res. Soc., 8 (1970), 185–200 | Zbl

[17] Henry-Labordere A., “The record balancing problem: A dynamic programming solution of a generalized traveling salesman problem”, Rev. Franç. Inform. Rech. Opér., 3:B-2 (1969), 43–49 | Zbl

[18] M. Yu. Khachai, E. D. Neznakhina, “Approximation schemes for the Generalized Traveling Salesman Problem”, Proc. Steklov Inst. Math., 299:1 (2017), 97–105 | DOI

[19] A. G. Chentsov, M. Yu. Khachai, D. M. Khachai, “An exact algorithm with linear complexity for a problem of visiting megalopolises”, Proc. Steklov Inst. Math., 295:1 (2016), 38–46 | DOI