On nonlinearity of Boolean functions generated by the generalized Dobbertin construction
Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 3, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of Dobbertin's 1995 construction for balanced highly nonlinear Boolean functions. The Walsh–Hadamard spectrum of the proposed functions is studied. An exact upper bound for the spectral radius (lower bound for nonlinearity) is achieved. We also introduce a method for constructing a balanced function of $2n$ variables and spectral radius $2^n + 2^k R$ using a balanced function of $n-k$ variables and spectral radius $R$. Bibliogr. 20.
Keywords: Boolean function, bent function, nonlinearity, balancedness, spectral radius.
@article{DA_2021_28_3_a2,
     author = {I. A. Sutormin},
     title = {On nonlinearity of {Boolean} functions generated by the generalized {Dobbertin} construction},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2021_28_3_a2/}
}
TY  - JOUR
AU  - I. A. Sutormin
TI  - On nonlinearity of Boolean functions generated by the generalized Dobbertin construction
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2021
SP  - 49
EP  - 64
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2021_28_3_a2/
LA  - ru
ID  - DA_2021_28_3_a2
ER  - 
%0 Journal Article
%A I. A. Sutormin
%T On nonlinearity of Boolean functions generated by the generalized Dobbertin construction
%J Diskretnyj analiz i issledovanie operacij
%D 2021
%P 49-64
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2021_28_3_a2/
%G ru
%F DA_2021_28_3_a2
I. A. Sutormin. On nonlinearity of Boolean functions generated by the generalized Dobbertin construction. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 3, pp. 49-64. http://geodesic.mathdoc.fr/item/DA_2021_28_3_a2/

[1] Matsui M., “Linear cryptanalysis method for DES cipher”, Advances in Cryptology, EUROCRYPT'93, Proc. Workshop Theory Appl. Cryptogr. Techniques (Lofthus, Norway, May 23–27, 1993), Lect. Notes Comput. Sci., 765, Springer, Heidelberg, 1994, 386–397 | Zbl

[2] Rothaus O., “On «bent» functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | Zbl

[3] Tokareva N. N., Bent functions: Results and applications to cryptography, Acad. Press, Amsterdam, 2015, 220 pp. | Zbl

[4] Mesnager S., Binary bent functions: Fundamentals and results, Springer, Heidelberg, 2016, 540 pp.

[5] Carlet C., “Boolean functions for cryptography and error-correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Camb. Univ. Press, New York, 2010, 257–397 | Zbl

[6] Cusick T., Stanica P., Cryptographic Boolean functions and applications, Acad. Press, Amsterdam, 2009, 248 pp. | Zbl

[7] O. A. Logachyov, A. A. Sal'nikov, S. V. Smyshlyaev, V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology, MTsNMO, M., 2012 (Russian)

[8] Schmidt K., “Asymptotically optimal Boolean functions”, J. Comb. Theory, Ser. A, 164 (2019), 50–59 | Zbl

[9] “Nonlinearly balanced Boolean functions and their propagation characteristics”, Advances in Cryptology, Crypto'93, Proc. 13th Annu. Int. Cryptology Conf. (Santa Barbara, CA, USA, Aug. 22–26, 1993), Lect. Notes Comput. Sci., Seberry J., Zhang X., Zheng Y., Springer, Heidelberg, 1994, 49–60 | Zbl

[10] Carlet C., “On bent and highly nonlinear balanced/resilient functions and their algebraic immunities”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 16th Int. Symp. (Las Vegas, NV, USA, Feb. 20–24, 2006), Lect. Notes Comput. Sci., 3857, Springer, Heidelberg, 2006, 1–28 | Zbl

[11] Wang Q., Tan C. H., “Properties of a family of cryptographic Boolean functions”, Sequences and Their Applications, SETA 2014, Proc. 8th Int. Conf. (Melbourne, Australia, Nov. 24–28, 2014), Lect. Notes Comput. Sci., 8865, Springer, Cham, 2014, 34–46 | Zbl

[12] Tang D., Maitra S., “Construction of $n$-variable ($n \equiv 2 \mod 4$) balanced Boolean functions with maximum absolute value in autocorrelation spectra $2^{\frac{n}{2}}$”, IEEE Trans. Inf. Theory, 64:1 (2018), 393–402 | Zbl

[13] Kavut S., Maitra S., Tang D., “Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile”, Des. Codes Cryptogr., 87:3 (2019), 261–276 | Zbl

[14] Patterson N. J., Wiedemann D. H., “The covering radius of the $(2^{15},16)$ Reed–Muller code is at least $16276$”, IEEE Trans. Inf. Theory, 29:3 (1983), 354–356 | Zbl

[15] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, Fast Software Encryption, Proc. 2nd Int. Workshop (Leuven, Belgium, Dec. 14–16, 1994), Lect. Notes Comput. Sci., 1008, Springer, Heidelberg, 1995, 61–74 | Zbl

[16] Fomin D., “New classes of $8$-bit permutations based on a butterfly structure”, Math. Asp. Cryptogr., 10:2 (2019), 169–180 | Zbl

[17] Kolomeec N., “The graph of minimal distances of bent functions and its properties”, Des. Codes Cryptogr., 85:3 (2017), 395–410 | Zbl

[18] Kolomeec N., “On properties of a bent function secondary construction”, Abs. 5th Int. Workshop Boolean Functions and Their Applications (Loen, Norway, Sept. 15–17, 2020), 23–26 (accessed Apr. 28, 2021) https://boolean.w.uib.no/files/2020/09/BFA_2020_abstracts_numbered.pdf

[19] Carlet C., “Two new classes of bent functions”, Advances in Cryptology, EUROCRYPT'93, Proc. Workshop Theory Appl. Cryptogr. Techniques (Lofthus, Norway, May 23–27, 1993), Lect. Notes Comput. Sci., 765, Springer, Heidelberg, 1994, 77–101 | Zbl

[20] V. V. Yashchenko, “On the propagation criterion for Boolean functions and on bent functions”, Probl. Inf. Transm., 33:1 (1997), 75–86 | Zbl