Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_1_a2, author = {R. Yu. Simanchev and P. V. Solovieva and I. V. Urazova}, title = {The affine hull of the schedule polytope for servicing identical requests by parallel devices}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {48--67}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_1_a2/} }
TY - JOUR AU - R. Yu. Simanchev AU - P. V. Solovieva AU - I. V. Urazova TI - The affine hull of the schedule polytope for servicing identical requests by parallel devices JO - Diskretnyj analiz i issledovanie operacij PY - 2021 SP - 48 EP - 67 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2021_28_1_a2/ LA - ru ID - DA_2021_28_1_a2 ER -
%0 Journal Article %A R. Yu. Simanchev %A P. V. Solovieva %A I. V. Urazova %T The affine hull of the schedule polytope for servicing identical requests by parallel devices %J Diskretnyj analiz i issledovanie operacij %D 2021 %P 48-67 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2021_28_1_a2/ %G ru %F DA_2021_28_1_a2
R. Yu. Simanchev; P. V. Solovieva; I. V. Urazova. The affine hull of the schedule polytope for servicing identical requests by parallel devices. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 48-67. http://geodesic.mathdoc.fr/item/DA_2021_28_1_a2/
[1] R. Yu. Simanchev, I. V. Urazova, “An integer-valued model for the problem of minimizing the total servicing time of unit claims with parallel devices with precedences”, Autom. Remote Control, 71:10 (2010), 2102–2108 | DOI | MR | Zbl
[2] R. Yu. Simanchev, I. V. Urazova, A. Yu. Kochetov, “The branch and cut method for the clique partitioning problem”, J. Appl. Ind. Math., 13:3 (2019), 539–556 | DOI | MR | Zbl
[3] Applegate D. L., Bixby R. E., Chvátal V., Cook W. J., Espinoza D. G., Goycoolea M., Helsgaun K., “Certification of an optimal TSP tour through 85 900 cities”, Oper. Res. Lett., 37 (2009), 11–15 | DOI | MR | Zbl
[4] Bouma W. H., Goldengorin B., “A polytime algorithm based on a primal LP model for the scheduling problem $1|pmtn;p_j=2;r_j|\sum w_jC_j$”, Recent Advances in Applied Mathematics, Proc. Amer. Conf. Appl. Math. (Cambridge, MA, USA, Jan. 27–29, 2010), WSEAS Press, Stevens Point, 2010, 415–420
[5] Crowder H., Jonson E. L., Padberg M. W., “Solving large-scale zero-one linear programming problems”, Oper. Res., 31 (1983), 803–834 | DOI | Zbl
[6] Grötschel M., Holland O., “Solution of large-scale symmetric travelling salesman problems”, Math. Program., 51 (1991), 141–202 | DOI | MR | Zbl
[7] Grötschel M., Wakabayashi Y., “A cutting plane algorithm for a clustering problem”, Math. Program., 45 (1989), 59–96 | DOI | MR | Zbl
[8] Balas E., “On the facial structure of scheduling polyhedra”, Mathematical Programming Essays in Honor of George B. Dantzig, v. I, Math. Program. Studies, 24, North-Holland, Amsterdam, 1985, 179–218 | DOI | MR
[9] Mokotoff E., “An exact algorithm for the identical parallel machine scheduling problem”, Eur. J. Oper. Res., 152 (2004), 758–769 | DOI | MR | Zbl
[10] Queyranne M., “Structure of simple scheduling polyhedron”, Math. Program., 58 (1993), 263–285 | DOI | MR | Zbl
[11] Queyranne M., Wang Y., “Single-machine scheduling polyhedra with precedence constraints”, Math. Oper. Res., 16 (1991), 1–20 | DOI | MR | Zbl
[12] Nemhauser G. L., Savelsbergh M. W. P., “A cutting plane algorithm of single machine scheduling problem with release times”, Combinatorial Optimization: New Frontiers in Theory and Practice, NATO ASI Ser., 82, Springer, Heidelberg, 1992, 63–84 | MR
[13] Schulz A. S., Polytopes and scheduling, PhD thesis, Technische Univ. Berlin, Berlin, 1996 | Zbl
[14] Queyranne M., Schulz A. S., Polyhedral approaches to machine scheduling, Technische Univ. Berlin, Berlin, 1994
[15] R. Yu. Simanchev, I. V. Urazova, “Scheduling unit-time jobs on parallel processors polytope”, Diskretn. Anal. Issled. Oper., 18:1 (2011), 85–97 (Russian) | MR | Zbl
[16] R. Yu. Simanchev, N. Yu. Shereshik, “Integer models for the interrupt-oriented services of jobs by single machine”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 89–101 (Russian) | MR | Zbl
[17] N. Yu. Shereshik, “Relaxations for the polyhedron of optimal schedules for the problem of interrupt-oriented service of jobs with a single machine”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 78–90 (Russian) | MR | Zbl
[18] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979 | MR | Zbl
[19] N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press, New York, 1975 | MR | Zbl
[20] Brucker P., Knust S., Complexity results for scheduling problems, Univ. Osnabrück, Osnabrück, 2009 (accessed Oct. 23, 2020) www2.informatik.uni-osnabrueck.de/knust/class | MR