Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_1_a1, author = {O. O. Razvenskaya and D. S. Malyshev}, title = {Efficient solvability of the~weighted vertex~coloring problem for~some two hereditary graph classes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {15--47}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_1_a1/} }
TY - JOUR AU - O. O. Razvenskaya AU - D. S. Malyshev TI - Efficient solvability of the~weighted vertex~coloring problem for~some two hereditary graph classes JO - Diskretnyj analiz i issledovanie operacij PY - 2021 SP - 15 EP - 47 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2021_28_1_a1/ LA - ru ID - DA_2021_28_1_a1 ER -
%0 Journal Article %A O. O. Razvenskaya %A D. S. Malyshev %T Efficient solvability of the~weighted vertex~coloring problem for~some two hereditary graph classes %J Diskretnyj analiz i issledovanie operacij %D 2021 %P 15-47 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2021_28_1_a1/ %G ru %F DA_2021_28_1_a1
O. O. Razvenskaya; D. S. Malyshev. Efficient solvability of the~weighted vertex~coloring problem for~some two hereditary graph classes. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 15-47. http://geodesic.mathdoc.fr/item/DA_2021_28_1_a1/
[1] Garey M. R., Johnson D. S., Computers and intractability: A guide to the theory of NP-completeness, Freeman, New York, 1979, 338 pp. | MR | Zbl
[2] Král' D., Kratochvíl J., Tuza Z., Woeginger G., “Complexity of coloring graphs without forbidden induced subgraphs”, Graph-Theoretic Concepts in Computer Science, Proc. 27th Int. Workshop (Boltenhagen, Germany, June 14–16, 2001), Lect. Notes Comput. Sci., 2204, Springer, Heidelberg, 2001, 254–262 | DOI | MR | Zbl
[3] Lozin V. V., Malyshev D. S., “Vertex coloring of graphs with few obstructions”, Discrete Appl. Math., 216 (2017), 273–280 | DOI | MR | Zbl
[4] Golovach P. A., Johnson M., Paulusma D., Song J., “A survey on the computational complexity of coloring graphs with forbidden subgraphs”, J. Graph Theory, 84:4 (2017), 331–363 | DOI | MR | Zbl
[5] Cameron K., Huang S., Penev I., Sivaraman V., “The class of $(P_7,C_4,C_5)$-free graphs: Decomposition, algorithms, and $\chi$-boundedness”, J. Graph Theory, 93:4 (2019), 503–552 | DOI | MR
[6] Cameron K., da Silva M., Huang S., Vuskovic K., “Structure and algorithms for (cap, even hole)-free graphs”, Discrete Math., 341 (2018), 463–473 | DOI | MR | Zbl
[7] Dai Y., Foley A., Hoàng C., “On coloring a class of claw-free graphs: To the memory of Frédéric Maffray”, Electron. Notes Theor. Comput. Sci., 346 (2019), 369–377 | DOI
[8] Fraser D., Hamela A., Hoàng C., Holmes K., LaMantia T., “Characterizations of $(4K_1,C_4,C_5)$-free graphs”, Discrete Appl. Math., 231 (2017), 166–174 | DOI | MR | Zbl
[9] Hoàng C., Lazzarato D., “Polynomial-time algorithms for minimum weighted colorings of $(P_5,\overline{P}_5)$-free graphs and similar graph classes”, Discrete Appl. Math., 186 (2015), 105–111 | DOI | MR
[10] Karthick T., Maffray F., Pastor L., “Polynomial cases for the vertex coloring problem”, Algorithmica, 81:3 (2017), 1053–1074 | DOI | MR
[11] Malyshev D. S., “The coloring problem for classes with two small obstructions”, Optim. Lett., 8:8 (2014), 2261–2270 | DOI | MR | Zbl
[12] Malyshev D. S., “Two cases of polynomial-time solvability for the coloring problem”, J. Comb. Optim., 31:2 (2016), 833–845 | DOI | MR | Zbl
[13] Malyshev D. S., “The weighted coloring problem for two graph classes characterized by small forbidden induced structures”, Discrete Appl. Math., 47 (2018), 423–432 | DOI | MR
[14] Malyshev D. S., Lobanova O. O., “Two complexity results for the vertex coloring problem”, Discrete Appl. Math., 219 (2017), 158–166 | DOI | MR | Zbl
[15] D. V. Gribanov, D. S. Malyshev, D. B. Mokeev, “Efficient solvability of the weighted vertex coloring problem for some hereditary class of graphs with $5$-vertex prohibitions”, J. Appl. Ind. Math., 14:3 (2020), 480-489 | DOI | MR | MR
[16] Chudnovsky M., Robertson N., Seymour P., Thomas R., “The strong perfect graph theorem”, Ann. Math., 164 (2006), 51–229 | DOI | MR | Zbl
[17] Grötschel M., Lovász L., Schrijver A., “Polynomial algorithms for perfect graphs”, Ann. Discrete Math., 21 (1984), 325–356 | MR | Zbl