Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_1_a0, author = {V. A. Voblyi}, title = {On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--14}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/} }
V. A. Voblyi. On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/
[1] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28:8 (2007), 2091–2105 | DOI | MR | Zbl
[2] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI | MR
[3] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | MR | Zbl
[4] V. A. Voblyi, A. M. Meleshko, “On the number of labeled series-parallel tricyclic blocks”, Proc. XV Int. Conf. "Algebra, number theory, and discrete geometry. Current problems and applications" (Tula, Russia, May 28-31, 2018), Izd. TGPU, Tula, 2018, 168–170 (Russian)
[5] V. A. Voblyi, The number of labeled tetracyclic series-parallel blocks, 2020, no. 47, 57–61 (Russian) | Zbl
[6] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka, M., 1965 (Russian) | MR
[7] V. A. Voblyi, “Explicit formula for the number of labeled series-parallel $k$-cyclic blocks”, Math. Notes, 108:4 (2020), 608–610 | DOI | MR | Zbl
[8] The on-line encyclopedia of integer sequences, The OEIS Foundation, Highland Park, NJ, 2020 (accessed Oct. 27, 2020) http://oeis.org
[9] Charalambides C. A., Enumerative combinatorics, CRC Press, Boca Raton, FL, 2002, 609 pp. | MR | Zbl
[10] Yu. I. Medvedev, G. I. Ivchenko, “Asymptotic representations of finite differences of a power function at an arbitrary point”, Theory Probab. Appl., 10:1 (1965), 139–144 | DOI | MR
[11] Wright E. M., “The number of connected sparsely edged graphs. IV”, J. Graph Theory, 7:2 (1983), 219–229 | DOI | MR | Zbl