On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs
Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an explicit formula for the number of labeled series-parallel $k$-cyclic $n$-vertex $2$-connected graphs and find the corresponding asymptotics for a large number of vertices and a fixed $k$. Under the uniform probability distribution, an asymptotic formula is obtained for the probability that a random $n$-vertex $k$-cyclic $2$-connected graph with a large number of vertices and a fixed $k$ is a series-parallel graph. Tab. 1, bibliogr. 11.
Keywords: enumeration, labeled graph, series-parallel graph, $k$-cyclic graph, asymptotics, random graph.
@article{DA_2021_28_1_a0,
     author = {V. A. Voblyi},
     title = {On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2021
SP  - 5
EP  - 14
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/
LA  - ru
ID  - DA_2021_28_1_a0
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2021
%P 5-14
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/
%G ru
%F DA_2021_28_1_a0
V. A. Voblyi. On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2021_28_1_a0/

[1] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28:8 (2007), 2091–2105 | DOI | MR | Zbl

[2] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI | MR

[3] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | MR | Zbl

[4] V. A. Voblyi, A. M. Meleshko, “On the number of labeled series-parallel tricyclic blocks”, Proc. XV Int. Conf. "Algebra, number theory, and discrete geometry. Current problems and applications" (Tula, Russia, May 28-31, 2018), Izd. TGPU, Tula, 2018, 168–170 (Russian)

[5] V. A. Voblyi, The number of labeled tetracyclic series-parallel blocks, 2020, no. 47, 57–61 (Russian) | Zbl

[6] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka, M., 1965 (Russian) | MR

[7] V. A. Voblyi, “Explicit formula for the number of labeled series-parallel $k$-cyclic blocks”, Math. Notes, 108:4 (2020), 608–610 | DOI | MR | Zbl

[8] The on-line encyclopedia of integer sequences, The OEIS Foundation, Highland Park, NJ, 2020 (accessed Oct. 27, 2020) http://oeis.org

[9] Charalambides C. A., Enumerative combinatorics, CRC Press, Boca Raton, FL, 2002, 609 pp. | MR | Zbl

[10] Yu. I. Medvedev, G. I. Ivchenko, “Asymptotic representations of finite differences of a power function at an arbitrary point”, Theory Probab. Appl., 10:1 (1965), 139–144 | DOI | MR

[11] Wright E. M., “The number of connected sparsely edged graphs. IV”, J. Graph Theory, 7:2 (1983), 219–229 | DOI | MR | Zbl