Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_4_a4, author = {D. S. Malyshev}, title = {Complete complexity dichotomy for~7-edge~forbidden subgraphs in~the~edge~coloring~problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {104--130}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_4_a4/} }
TY - JOUR AU - D. S. Malyshev TI - Complete complexity dichotomy for~7-edge~forbidden subgraphs in~the~edge~coloring~problem JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 104 EP - 130 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_4_a4/ LA - ru ID - DA_2020_27_4_a4 ER -
D. S. Malyshev. Complete complexity dichotomy for~7-edge~forbidden subgraphs in~the~edge~coloring~problem. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 4, pp. 104-130. http://geodesic.mathdoc.fr/item/DA_2020_27_4_a4/
[1] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, Freeman, New York, 1979, 338 pp. | MR | Zbl
[2] I. Holyer, “The NP-completeness of edge-coloring”, SIAM J. Comput., 10:4 (1981), 718–720 | DOI | MR | Zbl
[3] V. G. Vizing, “On estimation of the chromatic index of a p-graph”, Descrete Analysis, 3, Inst. Mat. SO AN SSSR, Novosibirsk, 1964, 25–30
[4] D. Král', J. Kratochvíl, Z. Tuza, G. J. Woeginger, “Complexity of coloring graphs without forbidden induced subgraphs”, Proc. 27th Int. Workshop Graph-Theoretic Concepts Comput. Sci. (Boltenhagen, Germany, June 14–16, 2001), Lect. Notes Comput. Sci., 2204, Springer, Heidelberg, 2001, 254–262 | DOI | MR | Zbl
[5] V. V. Lozin, D. S. Malyshev, “Vertex coloring of graphs with few obstructions”, Discrete Appl. Math., 216 (2017), 273–280 | DOI | MR | Zbl
[6] C. T. Hoàng, D. Lazzarato, “Polynomial-time algorithms for minimum weighted colorings of $(P_5, \overline{P}_5)$-free graphs and similar graph classes”, Discrete Appl. Math., 186 (2015), 105–111 | DOI | MR
[7] T. Karthick, F. Maffray, L. Pastor, “Polynomial cases for the vertex coloring problem”, Algorithmica, 81:3 (2017), 1053–1074 | DOI | MR
[8] D. S. Malyshev, “The coloring problem for classes with two small obstructions”, Optim. Lett., 8:8 (2014), 2261–2270 | DOI | MR
[9] D. S. Malyshev, “Two cases of polynomial-time solvability for the coloring problem”, J. Comb. Optim., 31:2 (2016), 833–845 | DOI | MR | Zbl
[10] D. S. Malyshev, “The weighted coloring problem for two graph classes characterized by small forbidden induced structures”, Discrete Appl. Math., 47 (2018), 423–432 | DOI | MR
[11] D. S. Malyshev, O. O. Lobanova, “Two complexity results for the vertex coloring problem”, Discrete Appl. Math., 219 (2017), 158–166 | DOI | MR | Zbl
[12] D. S. Malyshev, “Polynomial-time approximation algorithms for the coloring problem in some cases”, J. Comb. Optim., 33 (2017), 809–813 | DOI | MR | Zbl
[13] K. Cameron, S. Huang, I. Penev, V. Sivaraman, “The class of $(P_7, C_4, C_5)$-free graphs: Decomposition, algorithms, and $\chi$-boundedness”, J. Graph Theory, 93:4 (2020), 503–552 | DOI | MR | Zbl
[14] K. Cameron, M. da Silva, S. Huang, K. Vuskovic, “Structure, algorithms for (cap, even hole)-free graphs”, Discrete Math., 341 (2018), 463–473 | DOI | MR | Zbl
[15] Y. Dai, A. Foley, C. T. Hoàng, “On coloring a class of claw-free graphs: To the memory of Frédéric Maffray”, Electron. Notes Theor. Comput. Sci., 346 (2019), 369–377 | DOI
[16] D. J. Fraser, A. M. Hamela, C. T. Hoñg, K. Holmes, T. P. LaMantia, “Characterizations of $(4K_1, C_4, C_5)$-free graphs”, Discrete Appl. Math., 231 (2017), 166–174 | DOI | MR | Zbl
[17] P. Golovach, M. Johnson, D. Paulusma, J. Song, “A survey on the computational complexity of coloring graphs with forbidden subgraphs”, J. Graph Theory, 84 (2017), 331–363 | DOI | MR | Zbl
[18] H. J. Broersma, P. A. Golovach, D. Paulusma, J. Song, “Updating the complexity status of coloring graphs without a fixed induced linear forest”, Theor. Comput. Sci., 414:1 (2012), 9–19 | DOI | MR | Zbl
[19] P. A. Golovach, D. Paulusma, J. Song, “4-Coloring $H$-free graphs when $H$ is small”, Discrete Appl. Math., 161:1-2 (2013), 140–150 | DOI | MR | Zbl
[20] F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, M. Zhong, “Three-coloring and list three-coloring of graphs without induced paths on seven vertices”, Combinatorica, 38:4 (2018), 779–801 | DOI | MR | Zbl
[21] S. Spirkl, M. Chudnovsky, M. Zhong, “Four-coloring $P_6$-free graphs”, Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms (San Diego, USA, Jan. 6–9, 2019), SIAM, Philadelphia, PA, 2019, 1239–1256 | DOI | MR | Zbl
[22] C. T. Hoàng, M. Kamiñski, V. V. Lozin, J. Sawada, X. Shu, “Deciding $k$-colorability of $P_5$-free graphs in polynomial time”, Algorithmica, 57:1 (2010), 74–81 | DOI | MR
[23] S. Huang, “Improved complexity results on $k$-coloring $P_t$-free graphs”, Eur. J. Comb., 51 (2016), 336–346 | DOI | MR | Zbl
[24] D. S. Malyshev, “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”, Discrete Math., 338:11 (2015), 1860–1865 | DOI | MR | Zbl
[25] D. S. Malyshev, “The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs”, Graphs Comb., 33:4 (2017), 1009–1022 | DOI | MR | Zbl
[26] D. V. Sirotkin, D. S. Malyshev, “On the complexity of the vertex 3-coloring problem for the hereditary graph classes with forbidden subgraphs of small size”, J. Appl. Ind. Math., 12 (2018), 759–769 | DOI | MR | Zbl
[27] E. Galby, P. T. Lima, D. Paulusma, B. Ries, “Classifying $k$-edge colouring for $H$-free graphs”, Inf. Process. Lett., 146 (2019), 39–43 | DOI | MR | Zbl
[28] D. S. Malyshev, “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. Elektron. Mat. Izv., 11 (2014), 811–822 | MR | Zbl
[29] D. S. Malyshev, “Complexity classification of the edge coloring problem for a family of graph classes”, Discrete Math. Appl., 27:2 (2017), 97–101 | DOI | MR
[30] A. Schrijver, Combinatorial optimization Polyhedra and efficiency, Springer, Heidelberg, 2003, 1882 pp. | MR | Zbl
[31] D. König, “Gráfoks alkalmazásuk a determinánsok és a halmazok elméletére”, Matematikai és Természettudományi Értesitö, 34 (1916), 104–119 (Hungarian) | Zbl
[32] B. Courcelle, J. Makowsky, U. Rotics, “Linear time solvable optimization problems on graphs of bounded clique-width”, Theory Comput. Syst., 33:2 (2000), 125–150 | DOI | MR | Zbl
[33] R. Boliac, V. V. Lozin, “On the clique-width of graphs in hereditary classes”, Algorithms and Computation, Proc. 13th Int. Symp. (Vancouver, Canada, Nov. 21–23, 2002), Lect. Notes Comput. Sci., 2518, Springer, Heidelberg, 2002, 44–54 | DOI | MR | Zbl
[34] F. Gurski, E. Wanke, “Line graphs of bounded clique-width”, Discrete Math., 307:22 (2007), 2734–2754 | DOI | MR | Zbl
[35] D. Kobler, D. Rotics, “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Appl. Math., 126:2-3 (2003), 197–223 | DOI | MR
[36] V. V. Lozin, M. Kamiñski, “Coloring edges and vertices of graphs without short or long cycles”, Contrib. Discrete Math., 2:1 (2007), 61–66 | MR | Zbl