Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_4_a2, author = {P. D. Lebedev and V. N. Ushakov and A. A. Uspenskii}, title = {Numerical methods for constructing suboptimal~packings of~nonconvex domains with~curved~boundary}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {58--79}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_4_a2/} }
TY - JOUR AU - P. D. Lebedev AU - V. N. Ushakov AU - A. A. Uspenskii TI - Numerical methods for constructing suboptimal~packings of~nonconvex domains with~curved~boundary JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 58 EP - 79 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_4_a2/ LA - ru ID - DA_2020_27_4_a2 ER -
%0 Journal Article %A P. D. Lebedev %A V. N. Ushakov %A A. A. Uspenskii %T Numerical methods for constructing suboptimal~packings of~nonconvex domains with~curved~boundary %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 58-79 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2020_27_4_a2/ %G ru %F DA_2020_27_4_a2
P. D. Lebedev; V. N. Ushakov; A. A. Uspenskii. Numerical methods for constructing suboptimal~packings of~nonconvex domains with~curved~boundary. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 4, pp. 58-79. http://geodesic.mathdoc.fr/item/DA_2020_27_4_a2/
[1] N. N. Krasovskii, A. I. Subbotin, Positional Differential Games, Nauka, M., 1974 (Russian) | MR
[2] V. N. Ushakov, A. A. Uspenskii, A. G. Malev, “An estimate of the stability defect for a positional absorption set subjected to discriminant transformations”, Proc. Steklov Inst. Math., 279, Suppl. (2012), 113–129 | DOI
[3] V. N. Ushakov, P. D. Lebedev, N. G. Lavrov, “Algorithms for optimal packings in ellipse”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., 10:3 (2017), 67–79 (Russian) | Zbl
[4] P. D. Lebedev, A. L. Kazakov, “Iterative methods for the construction of planar packings of circles of different size”, Tr. Inst. Mat. Mekh., 24, no. 2, 2018, 141–151 (Russian)
[5] J. Machchhar, G. Elber, “Dense packing of congruent circles in free-form nonconvex containers”, Comput. Aided Geom. Des., 52-53 (2017), 13–27 | DOI | MR | Zbl
[6] L. Meng, C. Wang, X. Yao, “Non-convex shape effects on the dense random packing properties of assembled rods”, Physica A, 490 (2017), 212–221 | DOI | MR
[7] M. Locatelli, U. Raber, “Packing equal circles in a square: A deterministic global optimization approach”, Discrete Appl. Math., 122 (2017), 139–166 | DOI | MR
[8] Y. Li, H. Akeb, Basic heuristics for packing a large number of equal circles, Univ. Picardie Jules Verne, Amiens, 2005, 19 pp. (accessed Aug. 13, 2020) www.researchgate.net/publication/250761942_Basic_Heuristics_for_Packing_a_Great_Number_of_Equal_Circles
[9] I. Litvinchev, L. Ozuna, “Approximate packing circles in a rectangular container: Valid inequalities and nesting”, J. Appl. Res. Technology, 12:4 (2014), 716–723 | DOI | MR
[10] Yu. G. Stoyan, G. Yas'kov, “A mathematical model and a solution method for the problem of placing various-sized circles into a strip”, Eur. J. Oper. Res., 156 (2004), 590–600 | DOI | MR | Zbl
[11] Yu. G. Stoyan, G. Yas'kov, “Packing identical spheres into a rectangular parallelepiped”, Intelligent Decision Support: Current Challenges and Approaches, Gabler-Verl., Wiesbaden, 2008, 46–67
[12] M. Hifi, R. M'Hallah, “Approximate algorithms for constrained circular cutting problems”, Comput. Oper. Res., 31 (2004), 675–694 | DOI
[13] A. M. Chugai, “A solution to the disk packing problem in a convex polygon with the use of a modified method of tapering neighborhoods”, Radioélektron. Inform., 2005, no. 1, 58–63 (Russian)
[14] P. D. Lebedev, A. A. Uspenskii, “Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set”, Tr. Inst. Mat. Mekh., 22, no. 2, 2016, 188–198 (Russian)
[15] A. L. Kazakov, A. A. Lempert, T. T. Ta, “The sphere packing problem into bounded containers in three-dimension non-Euclidean space”, IFAC-PapersOnLine, 51:32 (2018), 782–787 | DOI
[16] A. L. Kazakov, A. A. Lempert, H. L. Nguyen, “An algorithm of packing congruent circles in a multiply connected set with non-Euclidean metrics”, Vychisl. Metody Program., 17:2 (2016), 177–188 (Russian)
[17] A. L. Kazakov, A. A. Lempert, H. L. Nguyen, “The problem of the optimal packing of the equal circles for special non-Euclidean metric”, Commun. Comput. Inf. Sci., 661 (2017), 58–68
[18] P. D. Lebedev, A. A. Uspenskii, “Algorithms of optimal packing construction in a 3-dimensional Euclidian space”, Modern Problems in Mathematics and Its Applications, Proc. 47th Int. Youth School-Conf. MPMA 2016 (Yekaterinburg, Russia, Jan. 31–Feb. 6, 2016), CEUR Workshop Proc., 1662, RWTH Aachen Univ., Aachen, 84–93 (accessed Aug. 13, 2020) www.ceur-ws.org/Vol-1662
[19] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995
[20] V. F. Demyanov, L. V. Vasilyev, Non-Differentiable Optimization, Nauka, M., 1981 (Russian) | MR
[21] I. V. Bychkov, A. L. Kazakov, A. A. Lempert, D. S. Bukharov, A. B. Stolbov, “An intelligent management system for the development of a regional transport logistics infrastructure”, Autom. Remote Control, 77:2 (2016), 332–343 | DOI | MR | Zbl
[22] V. L. Rvachov, Yu. G. Stoyan, “The problem of optimal placement of circular ingots”, Kibernetika, 1965, no. 3, 77–83 (Russian)
[23] I. Castillo, F. J. Kampas, J. D. Pinter, “Solving circle packing problems by global optimization: Numerical results and industrial applications”, Eur. J. Oper. Res., 191:3 (2008), 786–802 | DOI | MR | Zbl
[24] F. Harary, W. Randolph, P. G. Mezey, “A study of maximum unit-circle caterpillars tools for the study of the shape of adsorption patterns”, Discrete Appl. Math., 67:1–3 (1996), 127–135 | DOI | MR | Zbl
[25] A. V. Eremeev, L. A. Zaozerskaya, A. A. Kolokolov, “The set covering problem: Complexity, algorithms, and experimental investigations”, Diskretn. Anal. Issled. Oper., Ser. 2, 7:2 (2000), 22–46 (Russian) | MR
[26] R. Rockafellar, Convex Analysis, Princeton Univ., Princeton, 1970 | MR | Zbl
[27] P. D. Lebedev, A. V. Ushakov, “Approximating sets on a plane with optimal sets of circles”, Autom. Remote Control, 73:3 (2012), 485–493 | DOI | MR | Zbl
[28] A. G. Sukharev, A. V. Timokhov, V. V. Fyodorov, A Course in Optimization Methods, Nauka, M., 1986 (Russian) | MR
[29] E A. Nurminskii, D. Tien, “Method of conjugate subgradients with constrained memory”, Autom. Remote Control, 75:4 (2012), 646–656 | DOI | MR | Zbl
[30] E. A. Vorontsova, “Linear tolerance problem for input-output model with interval data”, Vychisl. Tekhnol., 22:2 (2017), 67–84 (Russian) | Zbl
[31] A. V. Gasnikov, P. E. Dvurechenskii, D. I. Kamzolov, Yu. E. Nesterov, V. G. Spokoiny, P. I. Stetsyuk, A. L. Suvorikova, A. V. Chernov, “Searching for equilibriums in multistage transport models”, Tr. Mosk. Fiz. Tekh. Inst., 7:4 (2015), 143–155 (Russian)
[32] P. D. Lebedev, A program for calculating the optimal coverage of a hemisphere with a set of spherical segments, Certificate of State Registration No 2015661543 from 29.10.2015 (Russian)
[33] L. F. Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Grundlehren Math. Wiss., 65, Springer, Heidelberg, 1953 (German) | MR
[34] L. M. Mestetskii, Continuous Morphology of Binary Images: Figures, Skeletons, Circulars, FIZMATLIT, M., 2009 (Russian)
[35] P. D. Lebedev, A. A. Uspenskii, “Construction of a nonsmooth solution to the time-optimal problem with a low order of smoothness of the target set boundary”, Tr. Inst. Mat. Mekh., 25, no. 1, 2019, 108–119 (Russian)
[36] A. A. Savyolov, Flat Curves: Systematics, Properties, Applications, Librokom, M., 2010 (Russian)
[37] E. Specht, Packomania, , 2018 (accessed Aug. 13, 2020) www.packomania.com | Zbl