Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_3_a2, author = {M. O. Golovachev and A. V. Pyatkin}, title = {On a routing {Open} {Shop} {Problem} on two nodes with unit processing times}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {53--70}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_3_a2/} }
TY - JOUR AU - M. O. Golovachev AU - A. V. Pyatkin TI - On a routing Open Shop Problem on two nodes with unit processing times JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 53 EP - 70 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_3_a2/ LA - ru ID - DA_2020_27_3_a2 ER -
M. O. Golovachev; A. V. Pyatkin. On a routing Open Shop Problem on two nodes with unit processing times. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 3, pp. 53-70. http://geodesic.mathdoc.fr/item/DA_2020_27_3_a2/
[1] T. Gonzalez, S. Sahni, “Open shop scheduling to minimize finish time”, J. ACM, 23:4 (1976), 665–679 | DOI | MR | Zbl
[2] D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K. Lenstra, S. V. Sevastjanov, D. B. Shmoys, “Short shop schedules”, Oper. Res., 45 (1997), 288–294 | DOI | MR | Zbl
[3] R. Cole, K. Ost, S. Schirra, “Edge-coloring bipartite multigraphs in O(E log D) time”, Combinatorica, 21:1 (2001), 5–12 | DOI | MR | Zbl
[4] I. Averbakh, O. Berman, I. Chernykh, “A 6/5-approximation algorithm for the two-machine routing open shop problem on a 2-node network”, Eur. J. Oper. Res, 166:1 (2005), 3–24 | DOI | MR | Zbl
[5] I. Averbakh, O. Berman, I. Chernykh, “The routing open-shop problem on a network: Complexity and approximation”, Eur. J. Oper. Res, 173:2 (2006), 521–539 | DOI | MR
[6] A. V. Kononov, “On the routing open shop problem with two machines on a two-vertex network”, J. Appl. Ind. Math., 6:3 (2012), 318–331 | DOI | MR | Zbl
[7] A. V. Pyatkin, I. D. Chernykh, “The open shop problem with routing at a two-node network and allowed preemption”, J. Appl. Ind. Math., 6:3 (2012), 346–354 | DOI | MR | Zbl
[8] R. Van Bevern, A. V. Pyatkin, “Completing partial schedules for open shop with unit processing times and routing”, Computer Science Theory and Applications, Proc. 11th Int. Computer Science Symp. in Russia (St. Petersburg, Russia, June 9–13, 2016), Lect. Notes Comput. Sci., 9691, Springer, Cham, 2016, 73–87 | DOI | MR | Zbl
[9] R. Van Bevern, A. V. Pyatkin, S. V. Sevastyanov, “An algorithm with parameterized complexity of constructing the optimal schedule for the routing open shop problem with unit execution times”, Sib. Elektron. Mat. Izv., 16 (2019), 42–84 | MR | Zbl
[10] P. Brucker, S. Knust, T. C. E. Cheng, N. V. Shakhlevich, “Complexity results for flow-shop and open-shop scheduling problems with transportation delays”, Ann. Oper. Res, 129 (2004), 81–106 | DOI | MR | Zbl
[11] I. Lushchakova, A. Soper, V. Strusevich, “Transporting jobs through a twomachine open shop”, Naval Res. Logistics, 56 (2009), 1–18 | DOI | MR | Zbl
[12] V. Strusevich, “A heuristic for the two-machine open-shop scheduling problem with transportation times”, Discrete Appl. Math., 93:2 (1999), 287–304 | DOI | MR | Zbl
[13] M. O. Golovachev, A. V. Pyatkin, “Routing Open Shop with two nodes, unit processing times and equal number of jobs and machines”, Mathematical Optimization Theory and Operations Research, Proc. 18th Int. Conf. (Yekaterinburg, Russia, July 8–12, 2019), Lect. Notes Comput. Sci., 11548, Springer, Cham, 2019, 264–276 | DOI | Zbl
[14] H. Bräsel, D. Kluge, F. Werner, “A polynomial algorithm for the $[n/m/0, t_{ij} = 1, tree/Cmax]$ open shop problem”, Eur. J. Oper. Res., 72:1 (1994), 125–134 | DOI | Zbl
[15] R. Diestel, Graph theory, Springer, Heidelberg, 2016 | MR