Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_3_a0, author = {V. L. Beresnev and A. A. Melnikov}, title = {Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--27}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/} }
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov TI - Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 5 EP - 27 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/ LA - ru ID - DA_2020_27_3_a0 ER -
%0 Journal Article %A V. L. Beresnev %A A. A. Melnikov %T Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 5-27 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/ %G ru %F DA_2020_27_3_a0
V. L. Beresnev; A. A. Melnikov. Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 3, pp. 5-27. http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/
[1] M. Grötschel, C. L. Monma, M. Stoer, “Design of survivable networks”, Handb. Oper. Res. Manage. Sci., 7 (1995), 617–672 | MR | Zbl
[2] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, “Network robustness and fragility: Percolation on random graphs”, Phys. Rev. Lett., 85 (2000), 5468–5471 | DOI
[3] A. Nagurney, Q. Qiang, “Fragile networks: Identifying vulnerabilities and synergies in an uncertain world”, Int. Trans. Oper. Res., 19:12 (2009), 123–160 | MR
[4] G. Brown, M. Carlyle, J. Salmerón, K. Wood, “Defending critical infrastructure”, Interfaces, 36:6 (2006), 530–544 | DOI
[5] M. P. Scaparra, R. L. Church, “A bilevel mixed-integer program for critical infrastructure protection planning”, Comput. Oper. Res., 35 (2008), 1905–1923 | DOI | Zbl
[6] B. Golden, “A problem in network interdiction”, Naval Res. Logist. Q., 25:4 (1978), 711–713 | DOI | Zbl
[7] R. K. Wood, “Deterministic network interdiction”, Math. Comput. Model., 17:2 (1993), 1–18 | DOI | MR | Zbl
[8] S. Sadeghi, A. Seifi, E. Azizi, “Trilevel shortest path network interdiction with partial fortification”, Comput. Ind. Eng., 106 (2017), 400–411 | DOI
[9] L. Dong, L. Xu-chen, Y. Xiang-tao, W. Fei, “A model for allocating protection resources in military logistics distribution system based on maximal covering problem”, 2010 Int. Conf. Logist. Syst. Intell. Manage. (Harbin, China, Jan. 9–10, 2010), v. 1, 2010, 98–101
[10] E. V. Alekseeva, Yu. A. Kochetov, “Metaheuristics and exact methods for the discrete (r|p)centroid problem”, Metaheuristics for bi-level optimization, Stud. Comput. Intell., 482, Springer, Berlin, 2013, 189–219 | MR
[11] M. C. Roboredo, L. Aizemberg, A. A. Pessoa, “An exact approach for the r-interdiction covering problem with fortification”, Cent. Eur. J. Oper. Res., 27 (2019), 111–131 | DOI | MR | Zbl
[12] M. C. Roboredo, A. A. Pessoa, “A branch-and-cut algorithm for the discrete (r|p)-centroid problem”, Eur. J. Oper. Res., 224:1 (2013), 101–109 | DOI | MR | Zbl
[13] Gurobi optimizer reference manual. Gurobi Optimization, , 2020 (accessed May 25, 2020) http://www.gurobi.com/documentation/9.0/refman/index.html