Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction
Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 3, pp. 5-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider same model of planning the defense of edges of a supply network. The vertices of the network represent the consumers and the providers of a resource, while the edges allow us to transmit the resource without delays and capacity constraints. The Defender commits a bounded budget to protect some of the edges, aiming to minimize the damage that is caused by the destruction of the unprotected edges. To measure the damage, we apply the value of the total resource deficit caused by the worst-case scenario of partial network destruction. The Defender's problem falls into the family of “Defender–Attacker” problems that are formalized as the minimax mixed-integer programming problems. To find an optimal Defender's solution, we suggest some two cut generation schemes based on a reformulation of the problem as a mixed-integer problem with exponentially many constraints. Tab. 2, illustr. 4, bibliogr. 13.
Keywords: “defender–attacker” problem, total deficit, cut generation.
@article{DA_2020_27_3_a0,
     author = {V. L. Beresnev and A. A. Melnikov},
     title = {Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - A. A. Melnikov
TI  - Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2020
SP  - 5
EP  - 27
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/
LA  - ru
ID  - DA_2020_27_3_a0
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A A. A. Melnikov
%T Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction
%J Diskretnyj analiz i issledovanie operacij
%D 2020
%P 5-27
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/
%G ru
%F DA_2020_27_3_a0
V. L. Beresnev; A. A. Melnikov. Planning a defense that minimizes a~resource~deficit in~the~worst-case scenario of~supply network destruction. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 3, pp. 5-27. http://geodesic.mathdoc.fr/item/DA_2020_27_3_a0/

[1] M. Grötschel, C. L. Monma, M. Stoer, “Design of survivable networks”, Handb. Oper. Res. Manage. Sci., 7 (1995), 617–672 | MR | Zbl

[2] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, “Network robustness and fragility: Percolation on random graphs”, Phys. Rev. Lett., 85 (2000), 5468–5471 | DOI

[3] A. Nagurney, Q. Qiang, “Fragile networks: Identifying vulnerabilities and synergies in an uncertain world”, Int. Trans. Oper. Res., 19:12 (2009), 123–160 | MR

[4] G. Brown, M. Carlyle, J. Salmerón, K. Wood, “Defending critical infrastructure”, Interfaces, 36:6 (2006), 530–544 | DOI

[5] M. P. Scaparra, R. L. Church, “A bilevel mixed-integer program for critical infrastructure protection planning”, Comput. Oper. Res., 35 (2008), 1905–1923 | DOI | Zbl

[6] B. Golden, “A problem in network interdiction”, Naval Res. Logist. Q., 25:4 (1978), 711–713 | DOI | Zbl

[7] R. K. Wood, “Deterministic network interdiction”, Math. Comput. Model., 17:2 (1993), 1–18 | DOI | MR | Zbl

[8] S. Sadeghi, A. Seifi, E. Azizi, “Trilevel shortest path network interdiction with partial fortification”, Comput. Ind. Eng., 106 (2017), 400–411 | DOI

[9] L. Dong, L. Xu-chen, Y. Xiang-tao, W. Fei, “A model for allocating protection resources in military logistics distribution system based on maximal covering problem”, 2010 Int. Conf. Logist. Syst. Intell. Manage. (Harbin, China, Jan. 9–10, 2010), v. 1, 2010, 98–101

[10] E. V. Alekseeva, Yu. A. Kochetov, “Metaheuristics and exact methods for the discrete (r|p)centroid problem”, Metaheuristics for bi-level optimization, Stud. Comput. Intell., 482, Springer, Berlin, 2013, 189–219 | MR

[11] M. C. Roboredo, L. Aizemberg, A. A. Pessoa, “An exact approach for the r-interdiction covering problem with fortification”, Cent. Eur. J. Oper. Res., 27 (2019), 111–131 | DOI | MR | Zbl

[12] M. C. Roboredo, A. A. Pessoa, “A branch-and-cut algorithm for the discrete (r|p)-centroid problem”, Eur. J. Oper. Res., 224:1 (2013), 101–109 | DOI | MR | Zbl

[13] Gurobi optimizer reference manual. Gurobi Optimization, , 2020 (accessed May 25, 2020) http://www.gurobi.com/documentation/9.0/refman/index.html