Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_2_a5, author = {V. M. Fomichev and Ya. E. Avezova}, title = {Exact formula for exponents of mixing digraphs~for~register~transformations}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {117--135}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_2_a5/} }
TY - JOUR AU - V. M. Fomichev AU - Ya. E. Avezova TI - Exact formula for exponents of mixing digraphs~for~register~transformations JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 117 EP - 135 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_2_a5/ LA - ru ID - DA_2020_27_2_a5 ER -
V. M. Fomichev; Ya. E. Avezova. Exact formula for exponents of mixing digraphs~for~register~transformations. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 2, pp. 117-135. http://geodesic.mathdoc.fr/item/DA_2020_27_2_a5/
[1] Frobenius G., “Über Matrizen aus nicht negativen Elementen”, Berl. Ber., 1912, 456–477 (German) | Zbl
[2] Dulmage A. L., Mendelsohn N. S., “The exponent of a primitive matrix”, Can. Math. Bull., 5:3 (1962), 241–244 | DOI | MR | Zbl
[3] V. M. Fomichev, Ya. E. Avezova, A. M. Koreneva, S. N. Kyazhin, “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Ind. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl
[4] V. M. Fomichev, Methods of Discrete Mathematics in Cryptology, Dialog-MIFI, M., 2010 (in Russian)
[5] V. Yu. Protasov, “Semigroups of non-negative matrices”, Rus. Math. Surv., 65:6 (2010), 1186–1188 | DOI | DOI | MR | Zbl
[6] Protasov V. Yu., Voynov A. S., “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437:3 (2012), 749–765 | DOI | MR | Zbl
[7] Voynov A. S., “Shortest positive products of nonnegative matrices”, Linear Algebra Appl., 439:6 (2013), 1627–1634 | DOI | MR | Zbl
[8] Brualdi R. A., Liu B., “Generalized exponents of primitive directed graphs”, J. Graph Theory, 14:4 (1990), 483–499 | DOI | MR | Zbl
[9] Liu B., “Generalized exponents of Boolean matrices”, Linear Algebra Appl., 373 (2003), 169–182 | DOI | MR | Zbl
[10] V. M. Fomichev, S. N. Kyazhin, “Local primitivity of matrices and graphs”, J. Appl. Ind. Math., 11:1 (2017), 26–39 | DOI | MR | Zbl
[11] Wielandt H., “Unzerlegbare, nicht negative Matrizen”, Math. Z., 52 (1950), 642-648 (German) | DOI | MR | Zbl
[12] Perkins P., “A theorem on regular graphs”, Pac. J. Math., 11:4 (1961), 1529–1533 | DOI | MR | Zbl
[13] Dulmage A. L., Mendelsohn N. S., “Gaps in the exponent set of primitive matrices”, Ill. J. Math., 8:4 (1964), 642–656 | DOI | MR | Zbl
[14] Neufeld S. W., “A diameter bound on the exponent of a primitive directed graph”, Linear Algebra Appl., 245 (1996), 27–47 | DOI | MR | Zbl
[15] A. V. Knyazev, Estimations for extreme values of principal metric characteristics of pseudosymmetrical graphs, Dr. Sci. Diss., VTs RAN, M., 2016 (in Russian)
[16] V. M. Fomichev, “The new universal estimation for exponents of graphs”, Prikl. Diskretn. Mat., 2016, no. 3, 78–84 (in Russian)
[17] V. M. Fomichev, “On improved universal estimation of exponents of digraphs”, Prikl. Diskretn. Mat., 2019, no. 43, 115–123 (in Russian)
[18] Golomb S. W., “Shift register sequences – A retrospective account”, Sequences and Their Applications – SETA 2006, Proc. 4th Int. Conf. (Beijing, China, Sept. 24–28, 2006), Lect. Notes Comput. Sci., 4086, Springer, Heidelberg, 2012, 1–4 | MR
[19] Goresky M., Klapper A., Algebraic shift register sequences, Camb. Univ. Press, Cambridge, 2012, 514 pp. | MR | Zbl
[20] V. I. Solodovnikov, Shift Registers and Cryptographic Algorithms Based on Them, Lambert Acad. Publ., Saarbrücken, 2017 (in Russian)