Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_2_a1, author = {V. M. Deundyak and E. A. Lelyuk}, title = {A graph-theoretical method {for~decoding~some~group~MLD-codes}}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {17--42}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_2_a1/} }
TY - JOUR AU - V. M. Deundyak AU - E. A. Lelyuk TI - A graph-theoretical method for~decoding~some~group~MLD-codes JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 17 EP - 42 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_2_a1/ LA - ru ID - DA_2020_27_2_a1 ER -
V. M. Deundyak; E. A. Lelyuk. A graph-theoretical method for~decoding~some~group~MLD-codes. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 2, pp. 17-42. http://geodesic.mathdoc.fr/item/DA_2020_27_2_a1/
[1] Massey J. L., Threshold decoding, MIT Press, Cambridge, MA, 1963 | MR
[2] G. C. Clark (Jr.), J. B. Cain, Error-Correction Coding for Digital Communications, Plenum Press, New York, 1981 | MR
[3] V. M. Sidel'nikov, “Open encryption based on binary Reed–Muller codes”, Diskretn. Mat., 6:2 (1994), 3–20 (Russian) | Zbl
[4] K.-Kh. Tsimmerman, Methods of the Modular Representations Theory in Algebraic Coding Theory, MTsNMO, M., 2011 (Russian)
[5] NIST reveals 26 algorithms advancing to the post-quantum crypto 'Semifinals', National Institute of Standards and Technology (accessed May 23, 2020) http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-algorithms-advancing-post-quantum-crypto-semifinals
[6] Borodin M. A., Chizhov I. V., “Effective attack on the McEliece cryptosystem based on Reed–Muller codes”, Discrete Math. Appl., 26:1 (2014), 273–280 | MR | Zbl
[7] Sidel'nikov V. M., Shestakov S. O., “On an encoding system constructed on the basis of generalized Reed–Solomon codes”, Discrete Math. Appl., 2:4 (1992), 439–444 | DOI | MR | Zbl
[8] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, Advances in Cryptology – EUROCRYPT 2007, Proc. 26th Annu. Int. Conf. Theory Appl. Cryptogr. Tech. (Barcelona, Spain, May 20–24, 2007), Lect. Notes Comput. Sci., 4515, Springer, Heidelberg, 2007, 347–360 | DOI | MR | Zbl
[9] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, Post-Quantum Cryptography, Proc. 3rd Int. Workshop (Darmstadt, Germany, May 25–28, 2010), Lect. Notes Comput. Sci., 6061, Springer, Heidelberg, 2010, 61–72 | DOI | MR | Zbl
[10] V. M. Deundyak, Yu. V. Kosolapov, “Cryptosystem based on induced group codes”, Model. Anal. Inf. Sist., 23:2 (2016), 137–152 (Russian) | MR
[11] V. M. Deundyak, Yu. V. Kosolapov, E. A. Lelyuk, “Decoding the tensor product of MLD codes and applications for code cryptosystems”, Autom. Control Comput. Sci., 52:7 (2018), 647–657 | DOI | MR
[12] Kasami T., Lin S., “On the construction of a class of majority-logic decodable codes”, IEEE Trans. Inform. Theory, IT-17:5 (1971), 600–610 | DOI | MR | Zbl
[13] V. M. Sidel'nikov, Coding Theory, FIZMATLIT, M., 2008 (Russian)
[14] Morelos-Zaragoza R. H., The art of error correcting coding, Wiley, Chichester, 2006
[15] Eh. L. Blokh, V. V. Zyablov, “Coding by generalized concatenated codes”, Probl. Inf. Transm., 10:3 (1974), 218–222 | MR | MR | Zbl
[16] V. A. Zinov'ev, “Generalized concatenated codes”, Probl. Peredachi Inf., 12:1 (1976), 5–15 (Russian) | MR | Zbl
[17] V. M. Deundyak, Y. V. Kosolapov, “Algorithms for majority decoding of group codes”, Model. Anal. Inf. Sist., 22:4 (2015), 464–482 (Russian) | MR
[18] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962 | MR | Zbl