Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_2_a0, author = {I. A. Borisova}, title = {Computational complexity of the problem of~choosing typical representatives in~a~2-clustering of a~finite set of~points in~a~metric~space}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--16}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_2_a0/} }
TY - JOUR AU - I. A. Borisova TI - Computational complexity of the problem of~choosing typical representatives in~a~2-clustering of a~finite set of~points in~a~metric~space JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 5 EP - 16 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_2_a0/ LA - ru ID - DA_2020_27_2_a0 ER -
%0 Journal Article %A I. A. Borisova %T Computational complexity of the problem of~choosing typical representatives in~a~2-clustering of a~finite set of~points in~a~metric~space %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 5-16 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2020_27_2_a0/ %G ru %F DA_2020_27_2_a0
I. A. Borisova. Computational complexity of the problem of~choosing typical representatives in~a~2-clustering of a~finite set of~points in~a~metric~space. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 2, pp. 5-16. http://geodesic.mathdoc.fr/item/DA_2020_27_2_a0/
[1] Garey M. R., Johnson D. S., Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl
[2] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., 75:2 (2009), 245–248 | DOI | Zbl
[3] Dasgupta S., The hardness of $k$-means clustering, Tech. Rep. CS2007-0890, Univ. California, San Diego, 2008, 6 pp.
[4] Papadimitriou C. H., “Worst-case and probabilistic analysis of a geometric location problem”, SIAM J. Comput., 10:3 (1981), 542–557 | DOI | MR | Zbl
[5] Har-Peled S., Mazumdar S., “Coresets for $k$-means and $k$-median clustering and their applications”, Proc. 36th Annu. ACM Sympos. Theory Comput. (Chicago, IL, USA, June 13–15, 2004), ACM, New York, 2004, 291–300 | MR | Zbl
[6] Kaufman L., Rousseeuw P. J., “Clustering by means of medoids”, Statistical data analysis based on the $L_{1}$-norm and related methods, North Holland, Amsterdam, 1987, 405–416 | MR
[7] A. V. Kel'manov, A. V. Pyatkin, V. I. Khandeev, “On the complexity of some max-min clustering problems”, Tr. Inst. Mat. Mekh. UrO RAN, 24, no. 4, 2018, 189–198 (Russian) | MR
[8] A. V. Kel'manov, A. V. Pyatkin, “NP-hardness of some Euclidean problems of partition of a finite set of points”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 852–856 (Russian) | DOI | Zbl
[9] Aggarwal H., Imai N., Katoh N., Suri S., “Finding $k$ points with minimum diameter and related problems”, J. Algorithms, 12:1 (1991), 38–56 | DOI | MR | Zbl
[10] Zukhba A. V., “NP-completeness of the problem of prototype selection in the nearest neighbor method”, Pattern Recognit. Image Anal., 20:4 (2010), 484–494 | DOI
[11] Banerjee S., Bhore S., Chitnis R., “Algorithms and hardness results for nearest neighbor problems in bicolored point sets”, Proc. 13th Latin Amer. Theor. Inform. Symp. (Buenos Aires, Argentina, Apr. 16–19, 2018), Lect. Notes Comput. Sci., 10807, Springer, Cham, 2018, 80–93 | DOI | MR | Zbl
[12] V. N. Vapnik, The Restoration of Dependencies from Empirical Data, Nauka, M., 1974 (Russian) | MR
[13] Burges C. J. C., “A Tutorial on support vector machines for pattern recognition”, Data Mining Knowl. Discov., 2:2 (1998), 121–167 | DOI | MR
[14] Zagoruiko N. G., Borisova I. A., Dyubanov V. V., Kutnenko O. A., “Methods of recognition based on the function of rival similarity”, Pattern Recognit. Image Anal., 18:1 (2008), 1–6 | DOI
[15] Kariv O., Hakimi S., “An algorithmic approach to network location problems. II: The $p$-medians”, SIAM J. Appl. Math., 37 (1979), 539–560 | DOI | MR | Zbl