Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_1_a4, author = {V. K. Leontiev and E. N. Gordeev}, title = {On the annihilators of {Boolean} polynomials}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {88--109}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_1_a4/} }
V. K. Leontiev; E. N. Gordeev. On the annihilators of Boolean polynomials. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 88-109. http://geodesic.mathdoc.fr/item/DA_2020_27_1_a4/
[1] I. A. Pankratova, Boolean Functions in Cryptography, Tomsk. Gos. Univ., Tomsk, 2014
[2] N. Courtois, W. Meier, “Algebraic attacks on stream ciphers with linear feedback”, Advances in Cryptology – EUROCRYPT 2003, Proc. Int. Conf. Theory Appl. Cryptogr. Tech. (Warsaw, Poland, May 4–8, 2003), Lect. Notes Comput. Sci., 2656, Springer, Heidelberg, 2003, 345–359 | DOI | MR | Zbl
[3] F. Didier, “A new upper bound of the block error probability after decoding over the erasure channel”, IEEE Trans. Inform. Theory, 52:10 (2006), 4496–4503 | DOI | MR | Zbl
[4] K. Feng, Q. Liao, J. Yang, “Maximal values of generalized algebraic immunity”, Des. Codes Cryptogr., 50 (2009), 243–252 | DOI | MR
[5] C. Carlet, B. Merabet, “Asymptotic lower bound on the algebraic immunity of random balanced multi-output Boolean functions”, Adv. Math. Commun., 7:2 (2013), 197–217 | DOI | MR | Zbl
[6] M. S. Lobanov, “Exact ratios between nonlinearity and algebraic immunity”, Diskretn. Anal. Issled. Oper., 15 (2008), 34–47 | Zbl
[7] M. S. Lobanov, “About a method for obtaining some lower estimates of nonlinearity of a Boolean function”, Mat. Zametki, 93:5 (2013), 741–745 | DOI | Zbl
[8] M. S. Lobanov, “An exact ratio between nonlinearity and algebraic immunity”, Diskretn. Mat., 18:3 (2006), 152–159 | DOI | Zbl
[9] V. K. Leont'ev, “Boolean polynomials and linear transformations”, Dokl. Ross. Akad. Nauk, 425:3 (2009), 320–322 | Zbl
[10] M. E. Tuzhilin, “Algebraic immunity of Boolean functions”, Prikl. Diskretn. Mat., 2008, no. 2, 18–22
[11] P. Rizomiliotis, “Improving the high order nonlinearity of Boolean functions with prescribed algebraic immunity”, Discrete Appl. Math., 158:18 (2010), 2049–2055 | DOI | MR | Zbl
[12] S. Mesnager, “Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity, IEEE Trans”, Inform. Theory, 54:8 (2008), 3656–3662 | DOI | MR | Zbl
[13] S. Mesnager, G. Gohen, “Fast algebraic immunity of Boolean functions”, Adv. Math. Commun., 11:2 (2017), 373–377 | DOI | MR | Zbl
[14] Q. Wang, T. Johansson, “On equivalence classes of Boolean functions”, Information Security and Cryptology, Rev. Sel. Pap. 13th Int. Conf. (Seoul, Korea, Dec. 1–3, 2010), Lect. Notes Comput. Sci., 6829, Springer, Heidelberg, 2011, 311–324 | DOI | MR | Zbl
[15] J. Peng, H. Kan, “Constructing rotation symmetric Boolean functions with maximum algebraic immunity on an odd number of variables”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E95-A:6 (2012), 1056–1064 | DOI
[16] L. Sun, F. W. Fu, “Constructions of balanced odd-variable rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity”, Theor. Comput. Sci., 738 (2018), 13–24 | DOI | MR | Zbl
[17] L. Sun, F. W. Fu, “Constructions of even-variable RSBFs with optimal algebraic immunity and high nonlinearity”, J. Appl. Math. Comput., 56:1–2 (2018), 593–610 | DOI | MR | Zbl
[18] F. U. Shaojing, D. U. Jiao, Q. U. Longjiang, L. I. Chao, “Construction of odd-variable rotation symmetric Boolean functions with maximum algebraic immunity”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E99-A:4 (2016), 853–855 | MR
[19] Q. Wang, C. H. Tan, P. Stanica, “Concatenations of the hidden weighted bit function and their cryptographic properties”, Adv. Math. Commun., 8:2 (2014), 153–165 | DOI | MR | Zbl
[20] V. K. Leont'ev, “Symmetrical Boolean polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1520–1531 | MR | Zbl
[21] C. Carlet, G. Gao, W. Liu, “A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions”, J. Comb. Theory, A, 127 (2014), 161–175 | DOI | MR | Zbl
[22] S. Su, X. Tang, “Construction of rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity”, Des. Codes Cryptogr., 71 (2014), 1567–1580 | MR
[23] V. K. Leont'ev, Combinatorics, Information, v. 1, Combinatorial Analysis, MFTI, M., 2015
[24] V. K. Leont'ev, O. Moreno, “About zeros of Boolean polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1608–1615 | MR | Zbl
[25] V. K. Leont'ev, E. N. Gordeev, “On number of zeros of Boolean polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 68:7 (2018), 1235–1245
[26] E. N. Gordeev, V. K. Leont'ev, N. V. Medvedev, “On properties of Boolean polynomials important for cryptosystems”, Vopr. Kiberbezopasnosti, 2017, no. 3, 63–69